Subscribe to RSS
DOI: 10.1055/a-1528-1118
Ten reasons why we should not abandon a detailed first trimester anomaly scan
Zehn Gründe, warum wir eine detaillierte Ersttrimester-Fehlbildungsdiagnostik nicht aufgeben solltenIntroduction
Within the last two decades, the first trimester screening at 11–13 weeks’ gestation has evolved from a simple measurement of the nuchal translucency (NT) thickness and the crown-rump length (CRL) towards a detailed risk stratification for several complications that may happen within the course of the pregnancy [1] [2]. As a consequence, first trimester screening is now considered crucial for the management of each pregnancy. It involves a detailed risk assessment for chromosomal abnormalities, especially for trisomy 21, for preeclampsia and fetal growth restriction as well as a detailed anomaly scan [3] [4] [5] [6] [7] [8] [9]. In a meta-analysis from Karim et al., the detection rate for fetal defects in a high risk population exceeded 60 % [5]. These positive aspects have resulted in the concept of “turning the pyramid of pregnancy care”. In short, this model relies on a detailed first trimester risk assessment and stratifies the further management of the pregnancy according to the respective risk profile [10].
Publication History
Article published online:
01 October 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Sonek JD, Kagan KO, Nicolaides KH. Inverted Pyramid of Care. Clinics in laboratory medicine 2016; 36: 305-317
- 2 Nicolaides KH. A model for a new pyramid of prenatal care based on the 11 to 13 weeks’ assessment. Prenatal diagnosis 2011; 31: 3-6
- 3 Kagan KO, Wright D, Valencia C. et al. Screening for trisomies 21, 18 and 13 by maternal age, fetal nuchal translucency, fetal heart rate, free-hCG and pregnancy-associated plasma protein-A. Human Reproduction 2008; 23: 1968-1975
- 4 Santorum M, Wright D, Syngelaki A. et al. Accuracy of first‐trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstetrics Amp Gynecol 2017; 49: 714-720
- 5 Karim JN, Roberts NW, Salomon LJ. et al. Systematic review of first‐trimester ultrasound screening for detection of fetal structural anomalies and factors that affect screening performance. Ultrasound Obst Gyn 2017; 50: 429-441
- 6 O’Gorman N, Wright D, Poon LC. et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound in Obstetrics & Gynecology 2017; 49: 751-755
- 7 Rolnik DL, Wright D, Poon LC. et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. New England Journal of Medicine 2017; 377: 613-622
- 8 Rolnik DL, Wright D, Poon LCY. et al. ASPRE trial: performance of screening for preterm pre‐eclampsia. Ultrasound in Obstetrics & Gynecology 2017; 50: 492-495
- 9 von Kaisenberg C, Chaoui R, Häusler M. et al. Quality Requirements for the early Fetal Ultrasound Assessment at 11–13+6 Weeks of Gestation (DEGUM Levels II and III). Ultraschall in der Medizin – European Journal of Ultrasound 2016; 37: 297-302
- 10 Nicolaides KH. Turning the Pyramid of Prenatal Care. Fetal diagnosis and therapy 2011; 29: 183-196
- 11 Kozlowski P, Burkhardt T, Gembruch U. et al. DEGUM, ÖGUM, SGUM and FMF Germany Recommendations for the Implementation of First-Trimester Screening, Detailed Ultrasound, Cell-Free DNA Screening and Diagnostic Procedures. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 2019; 40: 176-193
- 12 Kagan KO, Eiben B, Kozlowski P. Kombiniertes Ersttrimesterscreening und zellfreie fetale DNA – „Next Generation Screening“. Ultraschall in der Medizin (Stuttgart, Germany : 1980) 2014; 35: 229-236
- 13 Quezada MS, Gil MM, Francisco C. et al. Screening for trisomies 21, 18 and 13 by cell‐free DNA analysis of maternal blood at 10–11 weeks’ gestation and the combined test at 11–13 weeks. Ultrasound Obst Gyn 2015; 45: 36-41
- 14 Gil MM, Accurti V, Santacruz B. et al. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound in Obstetrics & Gynecology 2017; 50: 302-314
- 15 Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin Summary, Number 226. Obstetrics Gynecol 2020; 136: 859-867
- 16 Mol BWJ, Roberts CT, Thangaratinam S. et al. Pre-eclampsia. Lancet 2016; 387: 999-1011
- 17 Schleußner E. The prevention, diagnosis and treatment of premature labor. Deutsches Ärzteblatt international 2013; 110: 227-235 -quiz 236
- 18 registry E. Prenatal detection rates charts and tables [Internet]. n. d.Available from: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prenatal-screening-and-diagnosis_en
- 19 (IQWiG) I für Q und W im G. Dokumentation und Wuerdigung der Stellungnahmen zum Vorbericht Ultraschallscreening in der Schwangerschaft. 2005
- 20 Rydberg C, Tunón K. Detection of fetal abnormalities by second-trimester ultrasound screening in a non-selected population. Acta Obstetricia et Gynecologica Scandinavica 2017; 96: 176-182
- 21 IQWiG I für Q und W im G. Nichtinvasive Pränataldiagnostik (NIPD) zur Bestimmung des Risikos autosomaler Trisomien 13, 18 und 21 bei Risikoschwangerschaften. 2017 Dec;1–118.
- 22 Liao Y, Wen H, Ouyang S. et al. Routine first-trimester ultrasound screening using a standardized anatomical protocol. Am J Obstet Gynecol 2020; DOI: 10.1016/j.ajog.2020.10.037.
- 23 Kenkhuis MJA, Bakker M, Bardi F. et al. Yield of a 12‐13 week scan for the early diagnosis of fetal congenital anomalies in the cell‐free DNA era. Ultrasound in Obstetrics & Gynecology 2017; DOI: 10.1002/uog.17487.
- 24 Bardi F, Smith E, Kuilman M. et al. Early Detection of Structural Anomalies in a Primary Care Setting in the Netherlands. Fetal Diagn Ther 2019; 46: 12-19
- 25 Wagner P, Sonek J, Eberle K. et al. First trimester screening for major cardiac defects based on the ductus venosus flow in fetuses with trisomy 21. Prenatal diagnosis. 2018; 38: 561-566
- 26 Kagan KO, Sroka F, Sonek J. et al. First-trimester risk assessment based on ultrasound and cell-free DNA vs combined screening: a randomized controlled trial. Ultrasound in Obstetrics & Gynecology 2018; 51: 437-444
- 27 Minnella GP, Crupano FM, Syngelaki A. et al. Diagnosis of major heart defects by routine first‐trimester ultrasound examination: association with increased nuchal translucency, tricuspid regurgitation and abnormal flow in ductus venosus. Ultrasound Obst Gyn 2020; 55: 637-644
- 28 Souka AP, Kaisenberg CSV, Hyett JA. et al. Increased nuchal translucency with normal karyotype. American Journal of Obstetrics and Gynecology 2005; 192: 1005-1021
- 29 Volpe N, Dall’Asta A, Pasquo ED. et al. First‐trimester fetal neurosonography: technique and diagnostic potential. Ultrasound Obst Gyn 2021; 57: 204-214
- 30 Syngelaki A, Hammami A, Bower S. et al. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11–13 weeks’ gestation. Ultrasound in Obstetrics & Gynecology 2019; 54: 468-476
- 31 TG 2015 O.. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine 2017; 377: 13-27
- 32 Poston L, Caleyachetty R, Cnattingius S. et al. Preconceptional and maternal obesity: epidemiology and health consequences. The lancet Diabetes & endocrinology 2016; 4: 1025-1036
- 33 Eastwood K-A, Daly C, Hunter A. et al. The impact of maternal obesity on completion of fetal anomaly screening. J Perinat Med 2017; 45: 1061-1067
- 34 Thornburg LL, Miles K, Ho M. et al. Fetal anatomic evaluation in the overweight and obese gravida. Ultrasound Obst Gyn 2009; 33: 670-675
- 35 Toscano M, Grace D, Pressman EK. et al. Does transvaginal ultrasound at 13–15 weeks improve anatomic survey completion rates in obese gravidas?. J Maternal-fetal Neonatal Medicine 2019; 34: 1-251
- 36 Pasquo ED, Amiel J, Roth P. et al. Efficiency of prenatal diagnosis in Pierre Robin sequence. Prenatal Diag 2017; 37: 1169-1175
- 37 Yaron Y. The implications of non-invasive prenatal testing failures: a review of an under-discussed phenomenon. Prenatal diagnosis 2016; 36: 391-396
- 38 Revello R, Sarno L, Ispas A. et al. Screening for trisomies by cell-free DNA testing of maternal blood: consequences of a failed result. Ultrasound in Obstetrics & Gynecology 2016; 47: 698-704
- 39 Palomaki GE, Kloza EM, Lambert-Messerlian GM. et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genetics in medicine : official journal of the American College of Medical Genetics 2011; 13: 913-920
- 40 Agathokleous M, Chaveeva P, Poon LCY. et al. Meta-analysis of second-trimester markers for trisomy 21. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2013; 41: 247-261
- 41 Grati FR, Kagan KO. Rate of no result in cell-free DNA testing and its influence on test performance metrics. Ultrasound in Obstetrics & Gynecology 2017; 50: 134-137
- 42 Tørring N, Petersen OB, Becher N. et al. First trimester screening for other trisomies than trisomy 21, 18, and 13. Prenatal diagnosis 2015; 35: 612-619
- 43 Petersen OB, Vogel I, Ekelund C. et al. Potenzial diagnostic consequences of applying non-invasive prenatal testing: population-based study from a country with existing first-trimester screening. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2014; 43: 265-271
- 44 Syngelaki A, Guerra L, Ceccacci I. et al. Impact of holoprosencephaly, exomphalos, megacystis and increased nuchal translucency on first-trimester screening for chromosomal abnormalities. Ultrasound in Obstetrics & Gynecology 2017; 50: 45-48
- 45 Syngelaki A, Pergament E, Homfray T. et al. Replacing the combined test by cell-free DNA testing in screening for trisomies 21, 18 and 13: impact on the diagnosis of other chromosomal abnormalities. Fetal diagnosis and therapy 2014; 35: 174-184
- 46 Kagan KO, Hoopmann M, Hammer R. et al. Screening for chromosomal abnormalities by first trimester combined screening and noninvasive prenatal testing. Ultraschall in der Medizin (Stuttgart, Germany : 1980) 2015; 36: 40-46
- 47 Sabbagh R, den Veyver IBV. The current and future impact of genome-wide sequencing on fetal precision medicine. Hum Genet 2020; 139: 1121-1130
- 48 Chong HP, Hamilton S, Mone F. et al. Prenatal chromosomal microarray testing of fetuses with ultrasound structural anomalies: A prospective cohort study of over 1000 consecutive cases. Prenatal diagnosis 2019; 39: 1064-1069
- 49 Mulvey S, Wallace EM. Women’s knowledge of and attitudes to first and second trimester screening for Down’s syndrome. Bjog Int J Obstetrics Gynaecol 2000; 107: 1302-1305
- 50 Bartlett LA, Berg CJ, Shulman HB. et al. Risk factors for legal induced abortion-related mortality in the United States. Obstetrics and gynecology 2004; 103: 729-737
- 51 Mark KS, Bragg B, Talaie T. et al. Risk of complication during surgical abortion in obese women. American journal of obstetrics and gynecology 2017; DOI: 10.1016/j.ajog.2017.10.018.
- 52 Korenromp MJ, Page-Christiaens GCML, van den Bout J. et al. A prospective study on parental coping 4 months after termination of pregnancy for fetal anomalies. Prenatal Diag 2007; 27: 709-716
- 53 Davies V, Gledhill J, McFadyen A. et al. Psychological outcome in women undergoing termination of pregnancy for ultrasound-detected fetal anomaly in the first and second trimesters: a pilot study. Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2005; 25: 389-392
- 54 Zemet R, Haas J, Bart Y. et al. Optimal timing of fetal reduction from twins to singleton: earlier the better or later the better?. Ultrasound Obst Gyn 2021; 57: 134-140