Synlett 2021; 32(13): 1343-1353 DOI: 10.1055/a-1507-4153
cluster account
Perspectives on Organoheteroatom and Organometallic Chemistry
Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds
Xuefeng Cong
,
This work was supported by the National Natural Science Foundation of China (nos. 21572175 and 21971168), and the Fundamental Research Funds for the Central Universities (20826041D4117).
Abstract
Transition-metal-catalyzed cross-coupling has emerged as one of the most powerful and useful tools for the formation of C–C and C–heteroatom bonds. Given the shortage of resources of precious metals on Earth, the use of Earth-abundant metals as catalysts in developing cost-effective strategies for cross-coupling is a current trend in synthetic chemistry. Compared with the achievements made using first-row nickel, iron, cobalt, and even manganese catalysts, the group 6 metal chromium has rarely been used to promote cross-coupling. This perspective covers recent advances in chromium-catalyzed cross-coupling reactions in transformations of chemically inert C(aryl)–O, C(aryl)–N, and C(aryl)–H bonds, offering selective strategies for molecule construction. The ability of low-valent Cr with a high-spin state to participate in two-electron oxidative addition is highlighted; this is different from the mechanism involving single-electron transfer that is usually assigned to chromium-mediated transformations.
1 Introduction
2 Chromium-Catalyzed Kumada Coupling of Nonactivated C(aryl)–O and C(aryl)–N Bonds
3 Chromium-Catalyzed Reductive Cross-Coupling of Two Nonactivated C(aryl)–Heteroatom Bonds
4 Chromium-Catalyzed Functionalization of Nonactivated C(aryl)–H Bonds
5 Conclusions and Outlook
Key words
chromium catalysis -
homogeneous catalysis -
cross-coupling
Publikationsverlauf
Eingereicht: 10. April 2021
Angenommen nach Revision: 11. Mai 2021
Accepted Manuscript online: 11. Mai 2021
Artikel online veröffentlicht: 25. Juni 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1
Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Vol. 1.
de Meijere A,
Diederich F.
Wiley-VCH; Weinheim: 2004
2 Science of Synthesis: Cross Coupling and Heck-Type Reactions 1: C–C Cross Coupling Using Organometallic Partners.
Molander GA.
Thieme; Stuttgart: 2013
3 Science of Synthesis: Cross Coupling and Heck-Type Reactions 2: C–C Cross Coupling of Acidic C–H Nucleophiles, Wolfe J. P. Thieme; Stuttgart: 2013
4 Science of Synthesis: Cross Coupling and Heck-Type Reactions 3: C–C Cross Coupling Via C–H Activation.
Larhed M.
Thieme; Stuttgart 2013:
5
Suzuki A.
Angew. Chem. Int. Ed. 2011; 50: 6722
6
Negishi E.-i.
Angew. Chem. Int. Ed. 2011; 50: 6738
7 Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments, Molnár A. Wiley–VCH; Weinheim: 2013
8a
Johansson Seechurn CC. C,
Kitching MO,
Colacot TJ,
Snieckus V.
Angew. Chem. Int. Ed. 2012; 51: 5062
8b
Miyaura N,
Suzuki A.
Chem. Rev. 1995; 95: 2457
8c
Wang J,
Dong G.
Chem. Rev. 2019; 119: 7478
9a
Fagnou K,
Lautens M.
Chem. Rev. 2003; 103: 169
9b
Hayashi T,
Yamasaki K.
Chem. Rev. 2003; 103: 2829
9c
Song G,
Li X.
Acc. Chem. Res. 2015; 48: 1007
For selected reviews, see:
10a
Trost BM,
Toste FD,
Pinkerton AB.
Chem. Rev. 2001; 101: 2067
10b
Gunanathan C,
Milstein D.
Chem. Rev. 2014; 114: 12024
11a
Ni- and Fe-Based Cross-Coupling Reactions
.
Correa A.
Springer International; Cham: 2017
11b
Standley EA,
Tasker SZ,
Jensen KL,
Jamison TF.
Acc. Chem. Res. 2015; 48: 1503
11c
Diccianni J,
Lin Q,
Diao T.
Acc. Chem. Res. 2020; 53: 906
12a
Sherry BD,
Fürstner A.
Acc. Chem. Res. 2008; 41: 1500
12b
Sun C.-L,
Li B.-J,
Shi Z.-J.
Chem. Rev. 2011; 111: 1293
12c
Shang R,
Ilies L,
Nakamura E.
Chem. Rev. 2017; 117: 9086
12d
Nakamura M,
Matsuo K,
Ito S,
Nakamura E.
J. Am. Chem. Soc. 2004; 126: 3686
12e
Shang R,
Ilies L,
Matsumoto A,
Nakamura E.
J. Am. Chem. Soc. 2013; 135: 6030
12f
Shang R,
Ilies L,
Asako S,
Nakamura E.
J. Am. Chem. Soc. 2014; 136: 14349
12g
Shang R,
Ilies L,
Nakamura E.
J. Am. Chem. Soc. 2015; 137: 7660
12h
Shang R,
Ilies L,
Nakamura E.
J. Am. Chem. Soc. 2016; 138: 10132
12i
Ilies L,
Itabashi Y,
Shang R,
Nakamura E.
ACS Catal. 2017; 7: 89
12j
Doba T,
Matsubara T,
Ilies L,
Shang R,
Nakamura E.
Nat. Catal. 2019; 2: 400
12k
Nakamura E,
Yoshikai N.
J. Org. Chem. 2010; 75: 6061
12l
Nakamura E,
Sato K.
Nat. Mater. 2011; 10: 158
13a
Gao K,
Yoshikai N.
Acc. Chem. Res. 2014; 47: 1208
13b
Cheng J,
Wang L,
Wang P,
Deng L.
Chem. Rev. 2018; 118: 9930
13c
Cahiez G,
Moyeux A.
Chem. Rev. 2010; 110: 1435
13d
Liu W,
Sahoo B,
Junge K,
Beller M.
Acc. Chem. Res. 2018; 51: 1858
14a
Hu Y,
Zhou B,
Wang C.
Acc. Chem. Res. 2018; 51: 816
14b
Liu W,
Groves JT.
Acc. Chem. Res. 2015; 48: 1727
15a
Fürstner A.
Chem. Rev. 1999; 99: 991
15b
Agapie T.
Coord. Chem. Rev. 2011; 255: 861
15c
Zeng X,
Cong X.
Org. Chem. Front. 2015; 2: 69
15d
Li J,
Knochel P.
Synthesis 2019; 51: 2100
16a
Kochi JK,
Singleton DM.
J. Am. Chem. Soc. 1968; 90: 1582
16b
Okude Y,
Hirano S,
Hiyama T,
Nozaki H.
J. Am. Chem. Soc. 1977; 99: 3179
16c
Takai K,
Nitta K,
Utimoto K.
J. Am. Chem. Soc. 1986; 108: 7408
16d
Takai K,
Tagashira M,
Kuroda T,
Oshima K,
Utimoto K,
Nozaki H.
J. Am. Chem. Soc. 1986; 108: 6048
17
Gil A,
Albericio F,
Álvarez M.
Chem. Rev. 2017; 117: 8420
18a
Fürstner A,
Shi N.
J. Am. Chem. Soc. 1996; 118: 2533
18b
Fürstner A,
Shi N.
J. Am. Chem. Soc. 1996; 118: 12349
19a
Schwarz JL,
Schäfers F,
Tlahuext-Aca A,
Lückemeier L,
Glorius F.
J. Am. Chem. Soc. 2018; 140: 12705
19b
Schwarz JL,
Huang H.-M,
Paulisch TO,
Glorius F.
ACS Catal. 2020; 10: 1621
19c
Xiong Y,
Zhang G.
Org. Lett. 2016; 18: 5094
19d
Hirao Y,
Katayama Y,
Mitsunuma H,
Kanai M.
Org. Lett. 2020; 22: 8584
19e
Schwarz JL,
Kleinmans R,
Paulisch TO,
Glorius F.
J. Am. Chem. Soc. 2020; 142: 2168
19f
Kang JY,
Connell BT.
J. Am. Chem. Soc. 2010; 132: 7826
19g
Usanov DL,
Yamamoto H.
J. Am. Chem. Soc. 2011; 133: 1286
19h
Liu X,
Li X,
Chen Y,
Hu Y,
Kishi Y.
J. Am. Chem. Soc. 2012; 134: 6136
19i
Smith KM.
Coord. Chem. Rev 2006; 250: 1023
20a
Tobisu M,
Chatani N.
Acc. Chem. Res. 2015; 48: 1717
20b
Yu D.-G,
Li B.-J,
Shi Z.-J.
Acc. Chem. Res. 2010; 43: 1486
20c
Cornella J,
Zarate C,
Martin R.
Chem. Soc. Rev. 2014; 43: 8081
20d
Pang X,
He R.-D,
Shu X.-Z.
Synlett 2020; 31: 635
21
Wenkert E,
Michelotti EL,
Swindell CS.
J. Am. Chem. Soc. 1979; 101: 2246
22
Dankwardt JW.
Angew. Chem. Int. Ed. 2004; 43: 2428
23a
Tobisu M,
Shimasaki T,
Chatani N.
Angew. Chem. Int. Ed. 2008; 47: 4866
23b
Kakiuchi F,
Usui M,
Ueno S,
Chatani N,
Murai S.
J. Am. Chem. Soc. 2004; 126: 2706
23c
Ueno S,
Mizushima E,
Chatani N,
Kakiuchi F.
J. Am. Chem. Soc. 2006; 128: 16516
23d
Guan B.-T,
Xiang S.-K,
Wang B.-Q,
Sun Z.-P,
Wang Y,
Zhao K.-Q,
Shi Z.-J.
J. Am. Chem. Soc. 2008; 130: 3268
23e
Álvarez-Bercedo P,
Martin R.
J. Am. Chem. Soc. 2010; 132: 17352
23f
Zhao Y,
Snieckus V.
J. Am. Chem. Soc. 2014; 136: 11224
24a
Murakami K,
Ohmiya H,
Yorimitsu H,
Oshima K.
Org. Lett. 2007; 9: 1569
24b
Yan J,
Yoshikai N.
Org. Lett. 2017; 19: 6630
24c
Steib AK,
Kuzmina OM,
Fernandez S,
Flubacher D,
Knochel P.
J. Am. Chem. Soc. 2013; 135: 15346
24d
Yan J,
Yoshikai N.
Org. Chem. Front. 2017; 4: 1972
24e
Hirscher NA,
Sierra DP,
Agapie T.
J. Am. Chem. Soc. 2019; 141: 6022
24f
Yin J,
Li J,
Wang G.-X,
Yin Z.-B,
Zhang W.-X,
Xi Z.
J. Am. Chem. Soc. 2019; 141: 4241
25
Cong X,
Tang H,
Zeng X.
J. Am. Chem. Soc. 2015; 137: 14367
26
Tang J,
Luo M,
Zeng X.
Synlett 2017; 28: 2577
27
Rong Z,
Luo M,
Zeng X.
Org. Lett. 2019; 21: 6869
28a
Li J,
Ren Q,
Cheng X,
Karaghiosoff K,
Knochel P.
J. Am. Chem. Soc. 2019; 141: 18127
28b
Steib AK,
Kuzmina OM,
Fernandez S,
Malhotra S,
Knochel P.
Chem. Eur. J. 2015; 21: 1961
28c
Bellan AB,
Kuzmina OM,
Vetsova VA,
Knochel P.
Synthesis 2017; 49: 188
29
Fan F,
Tang J,
Luo M,
Zeng X.
J. Org. Chem. 2018; 83: 13549
30a
Ouyang K,
Hao W,
Zhang W.-X,
Xi Z.
Chem. Rev. 2015; 115: 12045
30b
Wang Q,
Su Y,
Li L,
Huang H.
Chem. Soc. Rev. 2016; 45: 1257
30c
García-Cárceles J,
Bahou KA,
Bower JF.
ACS Catal. 2020; 10: 12738
31a
Ueno S,
Chatani N,
Kakiuchi F.
J. Am. Chem. Soc. 2007; 129: 6098
31b
Koreeda T,
Kochi T,
Kakiuchi F.
J. Am. Chem. Soc. 2009; 131: 7238
31c
Tobisu M,
Nakamura K,
Chatani N.
J. Am. Chem. Soc. 2014; 136: 5587
32
Blanksby SJ,
Ellison GB.
Acc. Chem. Res. 2003; 36: 255
33
Cong X,
Fan F,
Ma P,
Luo M,
Chen H,
Zeng X.
J. Am. Chem. Soc. 2017; 139: 15182
34a
Everson DA,
Weix DJ.
J. Org. Chem. 2014; 79: 4793
34b
Weix DJ.
Acc. Chem. Res. 2015; 48: 1767
34c
Liu J,
Ye Y,
Sessler JL,
Gong H.
Acc. Chem. Res. 2020; 53: 1833
35a
Ackerman LK. G,
Lovell MM,
Weix DJ.
Nature 2015; 524: 454
35b
Huang L,
Ackerman LK. G,
Kang K,
Parsons A,
Weix DJ.
J. Am. Chem. Soc. 2019; 141: 10978
36
Cao Z.-C,
Shi Z.-J.
J. Am. Chem. Soc. 2017; 139: 6546
37
Tang J,
Liu LL,
Yang S,
Cong X,
Luo M,
Zeng X.
J. Am. Chem. Soc. 2020; 142: 7715
38
Tang J,
Fan F,
Cong X,
Zhao L,
Luo M,
Zeng X.
J. Am. Chem. Soc. 2020; 142: 12834
39a
Zhao Q,
Meng G,
Nolan SP,
Szostak M.
Chem. Rev. 2020; 120: 1981
39b
He J,
Wasa M,
Chan KS. L,
Shao Q,
Yu J.-Q.
Chem. Rev. 2017; 117: 8754
39c
Rej S,
Ano Y,
Chatani N.
Chem. Rev. 2020; 120: 1788
39d
Yi H,
Zhang G,
Wang H,
Huang Z,
Wang J,
Singh AK,
Lei A.
Chem. Rev. 2017; 117: 9016
39e
Li C.-J.
Wuli Huaxue Xuebao 2019; 35: 905
39f
Gandeepan P,
Müller T,
Zell D,
Cera G,
Warratz S,
Ackermann L.
Chem. Rev. 2019; 119: 2192
39g
Dong Z,
Ren Z,
Thompson SJ,
Xu Y,
Dong G.
Chem. Rev. 2017; 117: 9333
39h
Yang Y,
Lan J,
You J.
Chem. Rev. 2017; 117: 8787
40
Kuzmina OM,
Knochel P.
Org. Lett. 2014; 16: 5208
41
Tang J,
Liu P,
Zeng X.
Chem. Commun. 2018; 54: 9325
42
Chen M,
Doba T,
Sato T,
Razumkov H,
Ilies L,
Shang R,
Nakamura E.
J. Am. Chem. Soc. 2020; 142: 4883
43
Li Y,
Deng G,
Zeng X.
Organometallics 2016; 35: 747
44
Liu P,
Chen C,
Cong X,
Tang J,
Zeng X.
Nat. Commun. 2018; 9: 4637