CC BY-NC-ND 4.0 · Planta Medica International Open 2021; 8(03): e96-e103
DOI: 10.1055/a-1494-1117
Original Papers

Screening of 20 Pantanal Wetland Plants for Anti-Candida Activity using HPLC-DAD-MS/MS and Bioautography to Characterize Active Compounds

Daniela Z. de Brito#
1   Laboratory of Microbiological Research, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
,
Nadla S. Cassemiro#
2   Laboratory of Natural Products and Mass Spectrometry - LaPNEM, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
,
Jeana M. E. de Souza
2   Laboratory of Natural Products and Mass Spectrometry - LaPNEM, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
,
Geraldo A. Damasceno-Junior
3   Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
,
Rodrigo J. Oliveira
4   Center for Studies and Stem Cells, Cell Therapy and Toxicological Genetics – CeTroGen, Maria Aparecida Pedrossian University Hospital, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
,
2   Laboratory of Natural Products and Mass Spectrometry - LaPNEM, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
,
Marilene R. Chang
1   Laboratory of Microbiological Research, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
› Author Affiliations

Abstract

The Pantanal wetland harbors a rich flora with uncharted pharmacological potential. This study evaluated 20 Brazilian Pantanal plants against Candida albicans, C. parapsilosis, C. tropicalis, and C. krusei. Fungal susceptibility was determined by agar diffusion and broth microdilution; active compounds were identified by bioautography and HPLC-DAD-MS/MS. Sesbania virgata, Polygala molluginifolia, and Cantinoa mutabilis extracts and their chloroform and ethyl acetate (EtOAc) fractions exhibited the best activity against all Candida species tested. The EtOAc fraction of P. molluginifolia proved to be more efficient in inhibiting C. parapsilosis and C. krusei growth (Minimum inhibitory concentration of 125 and 62.5 μg/mL, respectively). Bioautography of this fraction revealed two active bands, characterized by HPLC-DAD-MS/MS as a mixture of podophyllotoxin derivatives blumenol, besides some flavonoids. This work demonstrated antifungal potential of P. molluginifolia podophyllotoxin derivatives and the versatility of bioautography with HPLC-DAD-MS/MS to identify the bioactive compounds.

# Daniela Z. de Brito and Nadla S. Cassemiro have equally contributed to the work and are co-authors.




Publication History

Received: 04 December 2020
Received: 20 April 2021

Accepted: 27 April 2021

Article published online:
14 July 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Araújo SM, Fontes CJF, Leite Júnior DP, Hahn RC. Fungal agents in different anatomical sites in public health services in Cuiabá, State of Mato Grosso, Brazil. Rev Inst. Med Trop 2012; 54: 5-10
  • 2 Mattos K, Rodrigues LC, Oliveira KMP, Diniz PF, Marques LI, Araujo AA, Chang MR. Variability in the clinical distributions of Candida species and the emergence of azole-resistant non-Candida albicans species in public hospitals in the Midwest region of Brazil. Rev Soc Bras Med Trop 2017; 50: 843-847
  • 3 Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers 2018; 4: 18026
  • 4 Chen J, Tian S, Han X, Chu Y, Wang Q, Zhou B, Shang H. Is the superbug fungus really so scary? A systematic review and meta-analysis of global epidemiology and mortality of Candida auris. BMC Infect Dis 2020; 20: 827
  • 5 Ahangarkani F, Shokohi T, Rezai MS, Ilkit M, Mahmoodi Nesheli H, Karami H, Tamaddoni A, Alizadeh-Navaei R, Khodavaisy S, Meis JF, Badali H. Epidemiological features of nosocomial candidaemia in neonates, infants and children: A multicentre study in Iran. Mycoses 2020; 63: 382-394
  • 6 Bonfietti LX, Szeszs MW, Chang MR, Martins MA, Pukinskas SRBS, Nunes MO, Perreira GH, Paniago AMM, Purisco SU, Melhem MSC. Ten-Year study of species distribution and antifungal susceptibilities of Candida bloodstream isolates at a Brazilian tertiary hospital. Mycopathologia 2012; 174: 389-396
  • 7 Colombo AL, Nucci M, Park BJ, Nouér SA, Arthington-Skaggs B, da Matta DA, Warnock D, Morgan J. Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers for the Brazilian network candidemia study. J Clin Microbiol 2006; 44: 2816-2823
  • 8 Arif T. Natural products – antifungal agents derived from plants. J Asian Nat Prod Res 2009; 11: 621-638
  • 9 Bieski IGC, Santos FR, Oliveira RM, Espinosa MM, Macedo M, Albuquerque UP, de Oliveira Martins DT. Ethnopharmacology of medicinal plants of the Pantanal region (Mato Grosso, Brazil). Evid Base Compl Alternative Med 2012; 2012: 1-36
  • 10 Evans TL, Costa M, Tomas WM, Camilo AR. Large-scale habitat mapping of the Brazilian Pantanal wetland: A synthetic aperture radar approach. Remote Sens Environ 2014; 155: 89-108
  • 11 Hoffmann JJ, Wiedhopf RM, Cole JR. Cytotoxic and tumor inhibitory agent from Polygala macradenia Gray (polygalaceae): 4’-demethyldeoxypodophyllotoxin. J Pharm Sci 1977; 66: 586-587
  • 12 Hokanson GC. Podophyllotoxin and 4′-demethylpodophyllotoxin from Polygala polygama (Polygalaceae). J Nat Prod 1978; 41: 497-498
  • 13 Huang IJ, Zhou LY, Wang JM, Li Q, Geng YY, Liu HY, Hua Y. Two new flavonol glycosides from Polygala sibirica L. var megalopha Fr. Molecules 2015; 20: 21494-21500
  • 14 Wu J, Chen S, Gao J, Wu L, Chen S, Tu P. Megastigmane glycosides from Polygala hongkongensis Hemsl. Chem Res Chinese U 2007; 23: 530-532
  • 15 Moron J, Polonsky J, Pourrat H. Polygalaxanthones A and B, new isolated xanthones from Polygala paenea . Bull Sot Chim Fr 1967; 130-134
  • 16 Shi TX, Wang S, Zeng KW, Tu PF, Jiang Y. Inhibitory constituents from the aerial parts of Polygala tenuifolia on LPS-induced NO production in BV2 microglia cells. Bioorg Med Chem Lett 2013; 23: 5904-5908
  • 17 Tian LW, Pei Y, Zhang YJ, Wang YF, Yang CR. 7-O-Methylkaempferol and - quercetin Glycosides from the Whole Plant of NerWilia fordii. J Nat Prod 2009; 72: 1057-1060
  • 18 Zhan HT, Jian-feng WU, Hai-yan L, Hong-qi M, Xu-xin Z. Protective effect of flavonoids from Polygala hongkongensis on blood brain barrier in rats with focal cerebral ischemia reperfusion. J Apoplexy Nerv Dis 2012; 29: 1004-1007
  • 19 Saleem M, Kim H.J, Han CK, Jin C, Lee YS. Secondary metabolites from Opuntia ficus-indica var. saboten. Phytochemistry 2006; 67: 1390-1394
  • 20 Schliemann W, Schmidt J, Nimtz M., Wray V, Fester T, Strack D. Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum . Phytochemistry 2006; 67: 1196-1205
  • 21 Deng X, Gao G, Zheng S, Li F. Qualitative and quantitative analysis of flavonoids in the leaves of Isatis indigatica Fort. by ultra-performance liquid chromatography with PDA and electrospray ionization tandem mass spectrometry detection. J Pharmaceut Biomed 2008; 48: 562-567
  • 22 Parejo I, Jauregui O, Nchez-Rabaneda FS, Viladomat F, Bastida J, Codina C. Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography-negative electrospray ionization tandem mass spectrometry. J Agric Food Chem 2004; 52: 3679-3687
  • 23 Luo Y, Wu S, Li X, Li P. LC-ESI-MS-MS Determination of rat plasma protein binding of major flavonoids of flos Lonicerae japonicae by centrifugal ultrafiltration. Chromatographia 2010; 72: 71-77
  • 24 Zhou Y, Jiang SY, Ding LS, Cheng SW, Xu HX, But PPH, Shaw PC. Chemical Fingerprinting of Medicinal Plants ‘‘Gui-jiu’’ by LC-ESI Multiple-Stage MS. Chromatographia 2008; 68: 781-789
  • 25 Duan RG, Li JW, Zou JH, Li QH. Lignans constituents from callus culture of Dysosma versipellis . J Chin Pharm Sci 2014; 49: 1306-1309
  • 26 Meng-long Y, Zhong-liang C, Ze-sheng G, Yu-xiang X. Separation and identification of chemical constituents of Dysosma majorense. Acta Bot Sin 1990; 32: 45-48
  • 27 Rybalchenko NP, Prylhodko VA, Nagorna SS, Volynets NN, Ostapchuk AN, Klochko VV, Rybalchenko TV, Avdeeva LV. In vitro antifungal activity of phenylheptatriyne from Bidens cernua L. against yeasts. Fitoterapia 2010; 81: 336-338
  • 28 Johann S, Mendes BG, Missau FC, Resende MA, Pizzolatti MG. Antifungal activity of five species of Polygala . Braz J Microbiol 2011; 42: 1065-1075
  • 29 Scorzoni L, Benaducci T, Almeida AMF, Silvia DHS, Bolzani VS, Gianinni MJSM. The use of standard methodology for determination of antifungal activity of natural products against medicinal yeasts Candida sp and Cryptococcus sp. Braz J Microbiol 2007; 38: 391-397
  • 30 Souza JME, Chang MR, Brito DZ, Farias KS, Damasceno-Junior GA, Turatti ICC, Lopes NP, Santos EA, Carollo CA. Antimicrobial activity of Aspilia latissimi (Asteraceae). Braz J Microbiol 2015; 46: 1103-1110
  • 31 Praxedes PG, Zerlin JK, Dias LO, Pessoni RAB. A novel antifungal protein from seeds of Sesbania virgata (Cav.) Pers. (Leguminosae-Faboideae). Braz J Biol 2011; 71: 687-692
  • 32 Rojas A, Hernandez L, Pereda-Miranda R, Mata R. Screening for antimicrobial activity of crude drug extract and pure natural products from Mexican medicinal plants. J Ethnopharmacol 1992; 5: 275-283
  • 33 Pauli A. Anticandidal low molecular compounds from higher plants with special reference to compounds from essential oils. Med Res Rev 2006; 26: 223-268
  • 34 Vuuren SF, Naidoo D. An antimicrobial investigation of plants used traditionally in southern Africa to treat sexually transmitted infections. J. Ethnopharmacol 2010; 130: 552-558
  • 35 Cleveland AA, Farley MM, Harrison LH, Stein B, Hollick R, Lockhart SR, Magill SS, Derado G, Park BJ, Chiller TM. Changes in incidence and antifungal drug resistance in candidemia: results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin Infect Dis 2012; 55: 1352-1361
  • 36 Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 2013; 8: 60047
  • 37 Seleem D, Pardi V, Murata RM. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro . Archives of Oral Biology 2016; 76: 76-83
  • 38 Vogt V, Cifuente D, Tonn C, Sabini L, Rosas S. Antifungal activity in vitro and in vivo of extracts and lignans isolated from Larrea divaricata Cav. against phytopathogenic fungus. Ind Crop Prod 2013; 42: 583-586
  • 39 Petrova A, Popova M, Kuzmanova C, Tsvetkova I, Naydenski H, Muli E, Bankova V. New biologically active compounds from Kenyan propolis. Fitoterapia 2010; 81: 509-514
  • 40 Gordaliza M, Garcıa PA, Del Corral JM, Castro MA, Gómez-Zurita MA. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 2004; 44: 441-459
  • 41 Richter BE, Jones BA, Ezzell JL, Porter N. Accelerated solvent extraction: A technique for sample preparation. Anal Chem 1996; 68: 1033-1039
  • 42 Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; forty informational supplement. CLSI document M27-S4. Clinical and Laboratory Standards Institute; 2012
  • 43 Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard, third edition. CLSI document M27-A3. Wayne: Clinical and Laboratory Standards Institute; 2008
  • 44 Rahalison L, Hamburger M, Monod M, Hostettmann K. Antifungal tests in phytochemical investigations: comparison of bioautographic methods using phytopathogenic and human pathogenic fungi. Planta Med 1993; 60: 41-44