Subscribe to RSS
DOI: 10.1055/a-1485-4956
Tetrahydroxydiboron-Initiated Atom-Transfer Radical Cyclization
The authors are grateful for the financial support from the Major National Science and Technology Projects of water pollution control and treatment (2017ZX07402003). The authors also thank the Natural Science Foundation of Tianjin (19JCYBJC20200) for support of this research.
Abstract
In this work, the first diboron reagent initiated atom-transfer radical cyclization was reported, in which the boryl radicals were generated by the homolytic cleavage of a B–B single bond weakened by the coordination of Lewis base. To clarify the role of carbonate and DMF in the cleavage of B–B bond, we calculated the free energy diagram of two pathways by density functional theory (DFT) investigations. The DFT calculation showed that the presence of carbonate facilitates the B–B bond cleavage to form boron radicals, which can be further stabilized by DMF. Subsequent atom-transfer cyclization initiated by stabilized dihydroxyboron radical is also energetically favored.
Key words
tetrahydroxydiboron - homolytic cleavage - atom-transfer radical cyclization - radical initiator - density functional theorySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1485-4956.
- Supporting Information
Publication History
Received: 01 March 2021
Accepted after revision: 19 April 2021
Accepted Manuscript online:
19 April 2021
Article published online:
26 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
- 1b Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
- 1c Rowlands GJ. Tetrahedron 2009; 65: 8603
- 1d Rowlands GJ. Tetrahedron 2010; 66: 1593
- 1e Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
- 1f Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 2a Curran DP. Synthesis 1988; 417
- 2b Curran DP, Seong CM. J. Am. Chem. Soc. 1990; 112: 9401
- 2c Curran DP, Tamine J. J. Org. Chem. 1991; 56: 2746
- 3a Gansäuer A, Bluhm H. Chem. Rev. 2000; 100: 2771
- 3b Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 3c Clark AJ. Chem. Soc. Rev. 2002; 31: 1
- 3d Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
- 3e Snider BB. Chem. Rev. 1996; 96: 339
- 3f Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
- 3g Edmonds DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
- 4a Ollivier C, Renaud P. Chem. Rev. 2001; 101: 3415
- 4b Renaud P, Beauseigneur A, Brecht-Forster A, Becattini B, Darmency V, Kandhasamy S, Montermini F, Ollivier C, Panchaud P, Pozzi D, Scanlan EM, Schaffner A.-P, Weber V. Pure Appl. Chem. 2007; 79: 223
- 4c Curran DP, Solovyev A, Brahmi MM, Fensterbank L, Malacria M, Lacôte E. Angew. Chem. Int. Ed. 2011; 50: 10294
- 4d Xu A.-Q, Zhang F.-L, Ye T, Yu Z.-X, Wang Y.-F. CCS Chem. 2019; 1: 504
- 4e Guo A, Han J.-B, Tang X.-Y. Org. Lett. 2018; 20: 2351
- 5a Yorimitsu H, Nakamura T, Shinokubo H, Oshima K. J. Org. Chem. 1998; 63: 8604
- 5b Yorimitsu H, Nakamura T, Shinokubo H, Oshima K, Omoto K, Fujimoto H. J. Am. Chem. Soc. 2000; 122: 11041
- 5c Yorimitsu H, Shinokubo H, Matsubara S, Oshima K, Omoto K, Fujimoto H. J. Org. Chem. 2001; 66: 7776
- 6a Ishiyama T, Murata M, Miyaura N. J. Org. Chem. 1995; 60: 7508
- 6b Ishiyama T, Itoh Y, Kitano T, Miyaura N. Tetrahedron Lett. 1997; 38: 3447
- 6c Wang M, Shi Z. Chem. Rev. 2020; 120: 7348
- 6d Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 6e Kuang Z, Yang K, Zhou Y, Song Q. Chem. Commun. 2020; 56: 6469
- 7a Wang G, Zhang H, Zhao J, Li W, Cao J, Zhu C, Li S. Angew. Chem. Int. Ed. 2016; 55: 5985
- 7b Wang G, Zhang H, Zhao J, Li W, Cao J, Zhu C, Li S. Angew. Chem. Int. Ed. 2016; 128: 6089
- 7c Wang G, Cao J, Gao L, Chen W, Huang W, Cheng X, Li S. J. Am. Chem. Soc. 2017; 139: 3904
- 7d Cao J, Wang G, Gao L, Cheng X, Li S. Chem. Sci. 2018; 9: 3664
- 7e Gao L, Wang G, Cheng X, Ma J, Li S. ACS Catal. 2019; 9: 10142
- 8a Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
- 8b Zhang L, Jiao L. J. Am. Chem. Soc. 2017; 139: 607
- 8c Zhang L, Jiao L. Chem. Sci. 2018; 9: 2711
- 8d Zhang L, Jiao L. J. Am. Chem. Soc. 2019; 141: 9124
- 8e Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
- 8f Cheng Y, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2018; 140: 6221
- 8g Friese FW, Studer A. Angew. Chem. Int. Ed. 2019; 58: 9561
- 9 Cao J, Wang G, Gao L, Chen H, Liu X, Cheng X, Li S. Chem. Sci. 2019; 10: 2767
- 10a Sebelius S, Olsson VJ, Szabó KJ. J. Am. Chem. Soc. 2005; 127: 10478
- 10b Olsson VJ, Sebelius S, Selander N, Szabó KJ. J. Am. Chem. Soc. 2006; 128: 4588
- 10c Molander GA, Trice SL. J, Dreher SD. J. Am. Chem. Soc. 2010; 132: 17701
- 10d Zhao C.-J, Xue D, Jia Z.-H, Wang C, Xiao J. Synlett 2014; 25: 1577
- 10e Erb W, Hellal A, Albini M, Rouden J, Blanchet J. Chem. Eur. J. 2014; 20: 6608
- 10f Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionov OV. J. Am. Chem. Soc. 2016; 138: 2985
- 10g Hu D, Wang L, Li P. Org. Lett. 2017; 19: 2770
- 10h Zhang J.-J, Duan X.-H, Wu Y, Yang J.-C, Guo L.-N. Chem. Sci. 2019; 10: 161
- 11a Londregan AT, Piotrowski DW, Xiao J. Synlett 2013; 24: 2695
- 11b Xia Y.-T, Sun X.-T, Zhang L, Luo K, Wu L. Chem. Eur. J. 2016; 22: 17151
- 11c Cummings SP, Le T.-N, Fernandez GE, Quiambao LG, Stokes BJ. J. Am. Chem. Soc. 2016; 138: 6107
- 11d Chen D, Zhou Y, Zhou H, Liu S, Liu Q, Zhang K, Uozumi Y. Synlett 2018; 29: 1765
- 12 Baber RA, Norman NC, Orpen AG, Rossi J. New J. Chem. 2003; 27: 773
- 13 Sun Z.-Y, Zhou S, Yang K, Guo M, Zhao W, Tang X, Wang G. Org. Lett. 2020; 22: 6214
- 14 For the slow hydrolysis of B2cat2 to B2(OH)4, see: Li J, Wang H, Qiu Z, Huang C.-Y, Li C.-J. J. Am. Chem. Soc. 2020; 142: 13011
- 15 Ikeda M, Teranishi H, Nozaki K, Ishibashi H. J. Chem. Soc., Perkin Trans. 1 1998; 10: 1691
- 16 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
- 17 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
- 18 Zheng J, Xu X, Truhlar DG. Theor. Chem. Acc. 2010; 128: 295
- 19 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
- 20 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Gaussian Inc; Wallingford CT: 2009
- 21 Cao L, Li C. Tetrahedron Lett. 2008; 49: 7380
- 22 Liu Q, Chen C, Tong X. Tetrahedron Lett. 2015; 56: 4483
- 23 Wang K.-B, Ran R.-Q, Xiu S.-D, Li C.-Y. Org. Lett. 2013; 15: 2374