Synlett 2021; 32(12): 1169-1178
DOI: 10.1055/a-1471-7307
synpacts

Allenes: Versatile Building Blocks in Cobalt-Catalyzed C–H Activation

Rahul K. Shukla
,
Akshay M. Nair
,
We would like to thank the Science and Engineering Research Board (SERB), India, for their generous financial support (CRG/2019/005059).


Abstract

The unique reactivity of allenes has led to their emergence as valuable coupling partners in transition-metal-mediated C–H activation reactions. On the other hand, due to its high abundance and high Lewis acidity, cobalt is garnering widespread interest as a useful catalyst for C–H activation. Here, we summarize cobalt-catalyzed C–H activations involving allenes as coupling partners and then describe our studies on Co(III)-catalyzed C-8 dienylation of quinoline N-oxides with allenes bearing a leaving group at the α-position for realizing a dienylation protocol.



Publication History

Received: 03 March 2021

Accepted after revision: 31 March 2021

Accepted Manuscript online:
31 March 2021

Article published online:
28 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
    • 1b Blieck R, Taillefer M, Monnier F. Chem. Rev. 2020; 120: 13545
    • 1c Ma S. Acc. Chem. Res. 2003; 36: 701
    • 1d Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
    • 1e Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
    • 1f Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
    • 1g Lu T, Lu Z, Ma Z.-X, Zhang Y, Hsung RP. Chem. Rev. 2013; 113: 4862
  • 3 Hashmi AS. K. Angew. Chem. Int. Ed. 2000; 39: 3590
  • 4 Santhoshkumar R, Cheng C.-H. Asian J. Org. Chem. 2018; 7: 1151
  • 5 Zhang YJ, Skucas E, Krische MJ. Org. Lett. 2009; 11: 4248
  • 6 Tran DN, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 8181

    • For Rh-catalyzed C–H activation reactions using allenes, see:
    • 7a Kong D.-S, Wang Y.-F, Zhao Y.-S, Li Q.-H, Chen Y.-X, Tian P, Lin G.-Q. Org. Lett. 2018; 20: 1154
    • 7b Jia Z.-J, Merten C, Gontla R, Danilicu CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 7c Zhou Z, Liu G, Lu X. Org. Lett. 2016; 18: 5668
    • 7d Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
    • 7e Wang H, Beiring B, Yu D.-G, Collins KD, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12430
    • 7f Gong T.-J, Su W, Liu Z.-J, Cheng W.-M, Xiao B, Fu Y. Org. Lett. 2014; 16: 330
    • 7g Ghosh C, Nagtilak PJ, Kapur M. Org. Lett. 2019; 21: 3237
    • 7h Zeng R, Ye J, Fu C, Ma S. Adv. Synth. Catal. 2013; 355: 1963
    • 7i Zeng R, Fu C, Ma S. J. Am. Chem. Soc. 2012; 134: 9597
    • 7j Wang H, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 7318
  • 8 Nakanowatari S, Ackermann L. Chem. Eur. J. 2015; 21: 16246
  • 9 Nakanowatari S, Müller T, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 15891
    • 10a Chen S.-Y, Han X.-L, Wu J.-Q, Li Q, Chen Y, Wang H. Angew. Chem. Int. Ed. 2017; 56: 9939
    • 10b Chen S.-Y, Li Q, Liu X.-G, Wu J.-Q, Zhang S.-S, Wang H. ChemSusChem 2017; 10: 2360
    • 10c Chen S.-Y, Li Q, Wang H. J. Org. Chem. 2017; 82: 11173
  • 11 Mo J, Müller T, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 7719
  • 12 Kuppusamy R, Muralirajan K, Cheng C.-H. ACS Catal. 2016; 6: 3909
  • 13 Kuppusamy R, Santhoshkumar R, Boobalan R, Wu H.-R, Cheng C.-H. ACS Catal. 2018; 8: 1880
  • 14 Boobalan R, Santhoshkumar R, Cheng C.-H. Adv. Synth. Catal. 2019; 361: 1140
  • 15 Boerth JA, Ellman JA. Angew. Chem. Int. Ed. 2017; 56: 9976
  • 16 Nakanowatari S, Mei R, Feldt M, Ackermann L. ACS Catal. 2017; 7: 2511
  • 17 Thrimurtulu N, Dey A, Maiti D, Volla CM. R. Angew. Chem. Int. Ed. 2016; 55: 12361
    • 18a Li T, Zhang C, Tan Y, Pan W, Rao Y. Org. Chem. Front. 2017; 4: 204
    • 18b Boobalan R, Kuppusamy R, Santhoshkumar R, Gandeepan P, Cheng C.-H. ChemCatChem 2017; 9: 273
    • 18c Lan T, Wang L, Rao Y. Org. Lett. 2017; 19: 972
  • 19 Zhai S, Qiu S, Chen X, Tao C, Li Y, Cheng B, Wang H, Zhai H. ACS Catal. 2018; 8: 6645
  • 20 Meyer TH, Oliveira JC. A, Sau SC. S, Ang NW. J, Ackermann L. ACS Catal. 2018; 8: 9140. 25
  • 21 Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Chem. Commun. 2020; 56: 1393
    • 22a Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
    • 22b Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 22c Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
  • 23 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
  • 24 Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
    • 25a Thrimurtulu N, Nallagonda R, Volla CM. R. Chem. Commun. 2017; 53: 1872
    • 25b Dey A, Thrimurtulu N, Volla CM. R. Org. Lett. 2019; 21: 3871
    • 25c Dey A, Volla CM. R. Org. Lett. 2020; 22: 7480
    • 26a Li Q, Fu C, Ma S. Angew. Chem. Int. Ed. 2012; 51: 11783
    • 26b Fu C, Ma S. Angew. Chem. Int. Ed. 2014; 53: 6511
    • 26c Petrone DA, Isomura M, Franzoni I, Rössler SL, Carreira EM. J. Am. Chem. Soc. 2018; 140: 4697
    • 27a Lippincott DJ, Linstadt RT. H, Maser MR, Gallou F, Lipshutz BH. Org. Lett. 2018; 20: 4719
    • 27b Semba K, Fujihara T, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2013; 52: 12400
    • 27c Mao M, Zhang L, Chen Y.-Z, Zhu J, Wu L. ACS Catal. 2017; 7: 181
    • 27d Zhu J, Mao M, Ji H.-J, Xu J.-Y, Wu L. Org. Lett. 2017; 19: 1946
  • 28 Shukla RS, Nair AM, Khan S, Volla CM. R. Angew. Chem. Int. Ed. 2020; 59: 17042
  • 29 Sontakke GS, Shukla RS, Volla CM. R. Beilstein J. Org. Chem. 2021; 17: 485