CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 283-294
DOI: 10.1055/a-1458-5109
Emerging Stars in Organic and Polymer Materials
Short Review

Strategies for Pore-Diameter Control in Mesoporous Carbons Derived from Organic Self-Assembly Processes

a   University of Stuttgart, Institute of Polymer Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
› Institutsangaben
Funding Information This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 358283783–SFB 1333.


Abstract

Soft-templating techniques have greatly facilitated access to (ordered) mesoporous carbon materials. A key strength of these approaches is that the resulting material can be shaped by a multitude of parameters – rendering soft-templating inherently versatile regarding features such as pore arrangement or pore sizes. Nonetheless, rational manipulation of pore sizes/diameters, let alone a systematic variation thereof, remains a formidable challenge with high relevance for research fields as diverse as catalysis, sensing or energy storage and conversion. Thus, this Short Review aims to provide a structured account of the most frequently employed strategies to impact mesopore diameters in carbon materials derived via soft-templating.

1. Introduction

2. Carbonization Temperature

3. Stoichiometry

4. Swelling Agents

5. Design of Polymeric SDAs/Templates

6. Conclusions and Outlook



Publikationsverlauf

Eingereicht: 29. Januar 2021

Angenommen: 26. Februar 2021

Accepted Manuscript online:
22. März 2021

Artikel online veröffentlicht:
17. Mai 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany