Subscribe to RSS
DOI: 10.1055/a-1458-5109
Strategies for Pore-Diameter Control in Mesoporous Carbons Derived from Organic Self-Assembly Processes
Funding Information This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 358283783–SFB 1333.
Abstract
Soft-templating techniques have greatly facilitated access to (ordered) mesoporous carbon materials. A key strength of these approaches is that the resulting material can be shaped by a multitude of parameters – rendering soft-templating inherently versatile regarding features such as pore arrangement or pore sizes. Nonetheless, rational manipulation of pore sizes/diameters, let alone a systematic variation thereof, remains a formidable challenge with high relevance for research fields as diverse as catalysis, sensing or energy storage and conversion. Thus, this Short Review aims to provide a structured account of the most frequently employed strategies to impact mesopore diameters in carbon materials derived via soft-templating.
1. Introduction
2. Carbonization Temperature
3. Stoichiometry
4. Swelling Agents
5. Design of Polymeric SDAs/Templates
6. Conclusions and Outlook
Publication History
Received: 29 January 2021
Accepted: 26 February 2021
Accepted Manuscript online:
22 March 2021
Article published online:
17 May 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Zhao D, Zhou W, Wan Y. Ordered Mesoporous Materials. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim: 2013. ; Chap. 8,: 293-341
- 2 Stein A, Wang Z, Fierke MA. Adv. Mater. 2009; 21: 265
- 3 Liang C, Li Z, Dai S. Angew. Chem. Int. Ed. 2008; 47: 3696
- 4 Xin W, Song Y. RSC Adv. 2015; 5: 83239
- 5 Panja T, Bhattacharjya D, Yu J.-S. J. Mater. Chem. A 2015; 3: 18001
- 6 Feng D, Lv Y, Wu Z, Dou Y, Han L, Sun Z, Xia Y, Zheng G, Zhao D. J. Am. Chem. Soc. 2011; 133: 15148
- 7 Hao G.-P, Li W.-C, Qian D, Wang G.-H, Zhang W.-P, Zhang T, Wang A.-Q, Schüth F, Bongard H.-J, Lu A.-H. J. Am. Chem. Soc. 2011; 133: 11378
- 8 Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D. Angew. Chem. Int. Ed. 2010; 49: 7987
- 9 Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. Chem. Soc. Rev. 2018; 47: 2680
- 10 Borchardt L, Oschatz M, Kaskel S. Chem. Eur. J. 2016; 22: 7324
- 11 Zhang LL, Zhao XS. Chem. Soc. Rev. 2009; 38: 2520
- 12 Chang H, Joo SH, Pak C. J. Mater. Chem. 2007; 17: 3078
- 13 Daems N, Sheng X, Vankelecom IF. J, Pescarmona PP. J. Mater. Chem. A 2014; 2: 4085
- 14 Perreault LL, Giret S, Gagnon M, Florek J, Larivière D, Kleitz F. ACS Appl. Mater. Interfaces 2017; 9: 12003
- 15 Zheng B, Lin X, Zhang X, Wu D, Matyjaszewski K. Adv. Funct. Mater. 2020; 30: 1907006
- 16 Liang C, Hong K, Guiochon GA, Mays JW, Dai S. Angew. Chem. Int. Ed. 2004; 43: 5785
- 17 Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun. 2005; 2125
- 18 Wan Y, Shi Y, Zhao D. Chem. Mater. 2008; 20: 932
- 19 Brinker CJ, Lu Y, Sellinger A, Fan H. Adv. Mater. 1999; 11: 579
- 20 Xia Y, Yang Z, Mokaya R. Nanoscale 2010; 2: 639
- 21 Ma T.-Y, Liu L, Yuan Z.-Y. Chem. Soc. Rev. 2013; 42: 3977
- 22 Chuenchom L, Kraehnert R, Smarsly BM. Soft Matter 2012; 8: 10801
- 23 Petkovich ND, Stein A. Chem. Soc. Rev. 2013; 42: 3721
- 24 Liang C, Dai S. J. Am. Chem. Soc. 2006; 128: 5316
- 25 Zhang F, Meng Y, Gu D, Yan Y, Yu C, Tu B, Zhao D. J. Am. Chem. Soc. 2005; 127: 13508
- 26 Schuster J, Köhn R, Döblinger M, Keilbach A, Amenitsch H, Bein T. J. Am. Chem. Soc. 2012; 134: 11136
- 27 Doncom KE. B, Blackman LD, Wright DB, Gibson MI, O'Reilly RK. Chem. Soc. Rev. 2017; 46: 4119
- 28 Kondrat S, Pérez CR, Presser V, Gogotsi Y, Kornyshev AA. Energy Environ. Sci. 2012; 5: 6474
- 29 Merlet C, Péan C, Rotenberg B, Madden PA, Daffos B, Taberna P.-L, Simon P, Salanne M. Nat. Commun. 2013; 4: 2701
- 30 Wang X, Liang C, Dai S. Langmuir 2008; 24: 7500
- 31 Liu C, Li L, Song H, Chen X. Chem. Commun. 2007; 757
- 32 Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D. Angew. Chem. Int. Ed. 2005; 44: 7053
- 33 Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao DY. Chem. Mater. 2006; 18: 4447
- 34 Libbrecht W, Verberckmoes A, Thybaut JW, Van Der Voort P, De Clercq J. Langmuir 2017; 33: 6769
- 35 Jin J, Nishiyama N, Egashira Y, Ueyama K. Microporous Mesoporous Mater. 2009; 118: 218
- 36 Mitome T, Hirota Y, Uchida Y, Nishiyama N. Colloids Surf., A 2016; 494: 180
- 37 Li P, Song Y, Guo Q, Shi J, Liu L. Mater. Lett. 2011; 65: 2130
- 38 Matei Ghimbeu C, Vidal L, Delmotte L, Le Meins J.-M, Vix-Guterl C. Green Chem. 2014; 16: 3079
- 39 Zhang J, Deng Y, Wei J, Sun Z, Gu D, Bongard H, Liu C, Wu H, Tu B, Schüth F, Zhao D. Chem. Mater. 2009; 21: 3996
- 40 Kruk M. Acc. Chem. Res. 2012; 45: 1678
- 41 Cao L, Man T, Kruk M. Chem. Mater. 2009; 21: 1144
- 42 Huang L, Yan X, Kruk M. Langmuir 2010; 26: 14871
- 43 Trivedi M, Peng F, Xia X, Sepulveda-Medina PI, Vogt BD. Langmuir 2019; 35: 14049
- 44 Wang Z, Stein A. Chem. Mater. 2008; 20: 1029
- 45 Zhang F, Meng Y, Gu D, Yan Y, Chen Z, Tu B, Zhao D. Chem. Mater. 2006; 18: 5279
- 46 Liu L, Wang F.-Y, Shao G.-S, Ma T.-Y, Yuan Z.-Y. Carbon 2010; 48: 2660
- 47 Wickramaratne NP, Jaroniec M. Carbon 2013; 51: 45
- 48 Liu D, Lei J.-H, Guo L.-P, Qu D, Li Y, Su B.-L. Carbon 2012; 50: 476
- 49 Peng L, Hung C.-T, Wang S, Zhang X, Zhu X, Zhao Z, Wang C, Tang Y, Li W, Zhao D. J. Am. Chem. Soc. 2019; 141: 7073
- 50 Deng Y, Liu J, Liu C, Gu D, Sun Z, Wei J, Zhang J, Zhang L, Tu B, Zhao D. Chem. Mater. 2008; 20: 7281
- 51 Labiano A, Dai M, Young W.-S, Stein GE, Cavicchi KA, Epps TH, Vogt BD. J. Phys. Chem. C 2012; 116: 6038
- 52 Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem. Rev. 2016; 116: 2170
- 53 Naumann S, Thomas AW, Dove AP. Angew. Chem. Int. Ed. 2015; 54: 9550
- 54 Zhang C.-J, Duan H.-Y, Hu L.-F, Zhang C.-H, Zhang X.-H. ChemSusChem 2018; 11: 4209
- 55 Chen Y, Shen J, Liu S, Zhao J, Wang Y, Zhang G. Macromolecules 2018; 51: 8286
- 56 Markus F, Bruckner JR, Naumann S. Macromol. Chem. Phys. 2020; 221: 1900437
- 57 Huang Y, Cai H, Yu T, Zhang F, Zhang F, Meng Y, Gu D, Wan Y, Sun X, Tu B, Zhao D. Angew. Chem. Int. Ed. 2007; 46: 1089
- 58 Li P, Song Y, Lin Q, Shi J, Liu L, He L, Ye H, Guo Q. Microporous Mesoporous Mater. 2012; 159: 81
- 59 Balint A, Papendick M, Clauss M, Müller C, Giesselmann F, Naumann S. Chem. Commun. 2018; 54: 2220
- 60 Vogler C, Naumann S. RSC Adv. 2020; 10: 43389
- 61 Kowalewski T, Tsarevsky NV, Matyjaszewski K. J. Am. Chem. Soc. 2002; 124: 10632
- 62 Zhou Z, Liu G. Small 2017; 13: 1603107
- 63 Kopeć M, Lamson M, Yuan R, Tang C, Kruk M, Zhong M, Matyjaszewski K, Kowalewski T. Prog. Polym. Sci. 2019; 92: 89
- 64 Deng Y, Cai Y, Sun Z, Gu D, Wei J, Li W, Guo X, Yang J, Zhao D. Adv. Funct. Mater. 2010; 20: 3658
- 65 Tian H, Lin Z, Xu F, Zheng J, Zhuang X, Mai Y, Feng X. Small 2016; 12: 3155
- 66 Werner JG, Hoheisel TN, Wiesner U. ACS Nano 2014; 8: 731
- 67 Bailey TS, Hardy CM, Epps TH, Bates FS. Macromolecules 2002; 35: 7007
- 68 Wei J, Deng Y, Zhang J, Sun Z, Tu B, Zhao D. Solid State Sci. 2011; 13: 784
- 69 Fei H.-F, Li W, Bhardwaj A, Nuguri S, Ribbe A, Watkins JJ. J. Am. Chem. Soc. 2019; 141: 17006
- 70 Herzog N, Hübner H, Rüttiger C, Gallei M, Andrieu-Brunsen A. Langmuir 2020; 36: 4015
- 71 Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S. Adv. Mater. 2018; 30: 1705850
- 72 Yu F, Liu M, Ma C, Di L, Dai B, Zhang L. Nanomaterials 2019; 9: 1436
- 73 Ziegler F, Teske J, Elser I, Dyballa M, Frey W, Kraus H, Hansen N, Rybka J, Tallarek U, Buchmeiser MR. J. Am. Chem. Soc. 2019; 141: 19014
- 74 Kondrat S, Pérez CR, Presser V, Gogotsi Y, Kornyshev AA. Energy Environ. Sci. 2012; 5: 6474