Subscribe to RSS
DOI: 10.1055/a-1405-7012
Perspective on Organoboron Chemistry
We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants 21971144 and 21632006), the Key R&D Program of Shandong Province (Grant 2019GGX102032), the Natural Science Foundation of Shandong Province (Grant ZR2019ZD46), and the Multidisciplinary Research and Innovation Team of Young Scholars of Shandong University (Grant 2020QNQT007).
Dedicated to the 100th anniversary of Chemistry at Nankai University
Abstract
Organoboron compounds play prominent roles in structural, synthetic, and materials chemistry because boron atoms can feature electrophilic, ambiphilic, or nucleophilic character. This perspective briefly describes the most recent progress in organoboron chemistry, focusing on new boron molecules and their applications that have attracted great interest from main-group chemists. The research hotspots arising from these pioneering results are also discussed.
1 Introduction
2 Diboron Reagents
3 Boryl Anions
4 Borylenes
5 Nucleophilic or Ambiphilic Boron-Containing N-Heterocycles
6 Conclusions and Outlook
Publication History
Received: 29 January 2021
Accepted after revision: 04 March 2021
Accepted Manuscript online:
04 March 2021
Article published online:
01 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Synthesis and Application of Organoboron Compounds . Fernández E, Whiting A. Springer International Publishing; Cham: 2015
- 2 Stephan DW. Chem. 2020; 6: 1520
- 3 Wade CR, Broomsgrove AE. J, Aldridge S, Gabbaï FP. Chem. Rev. 2010; 110: 3958
- 4a Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
- 4b Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
- 4c Jäkle F. Chem. Rev. 2010; 110: 3985
- 5 Dewhurst RD, Neeve EC, Braunschweig H, Marder TB. Chem. Commun. 2015; 51: 9594
- 6 Bissinger P, Braunschweig H, Damme A, Dewhurst RD, Kupfer T, Radacki K, Wagner K. J. Am. Chem. Soc. 2011; 133: 19044
- 7a Katsuma Y, Asakawa H, Yamashita M. Chem. Sci. 2018; 9: 1301
- 7b Kojima C, Lee K.-H, Lin Z, Yamashita M. J. Am. Chem. Soc. 2016; 138: 6662
- 7c Katsuma Y, Asakawa H, Lee K.-H, Lin Z, Yamashita M. Organometallics 2016; 35: 2563
- 7d Asakawa H, Lee K.-H, Lin Z, Yamashita M. Nat. Commun. 2014; 5: 4245
- 8 Schön F, Greb L, Kaifer E, Himmel H.-J. Angew. Chem. Int. Ed. 2020; 59: 9127
- 9 Arrowsmith M, Böhnke J, Braunschweig H, Celik MA. Angew. Chem. Int. Ed. 2017; 56: 14287
- 10 Lu W, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2017; 139: 5047
- 11a Lu W, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2018; 140: 1255
- 11b Lu W, Kinjo R. Chem. Commun. 2018; 54: 8842
- 11c Lu W, Kinjo R. Chem. Eur. J. 2018; 24: 15656
- 12 Stennett TE, Mattock JD, Vollert I, Vargas A, Braunschweig H. Angew. Chem. Int. Ed. 2018; 57: 4098
- 13 Fan J, Mah J.-Q, Yang M.-C, Su M.-DSo C.-W. J. Am. Chem. Soc. 2021; in press DOI: 10.1021/jacs.0c12627.
- 14 Lu W, Li Y, Ganguly R, Kinjo R. Angew. Chem. Int. Ed. 2017; 56: 9829
- 15 Lu W, Xu K, Li Y, Hirao H, Kinjo R. Angew. Chem. Int. Ed. 2018; 57: 15691
- 16 Böhnke J, Arrowsmith M, Braunschweig H. J. Am. Chem. Soc. 2018; 140: 10368
- 17 Braunschweig H, Dewhurst RD, Schneider A. Chem. Rev. 2010; 110: 3924
- 18 Dang L, Lin Z, Marder TB. Chem. Commun. 2009; 3987
- 19 Segawa Y, Yamashita M, Nozaki K. Science 2006; 314: 113
- 20 Segawa Y, Suzuki Y, Yamashita M, Nozaki K. J. Am. Chem. Soc. 2008; 130: 16069 ; corrigendum: J. Am. Chem. Soc. 2009, 131, 9600
- 21 Braunschweig H, Burzler M, Dewhurst RD, Radacki K. Angew. Chem. Int. Ed. 2008; 47: 5650
- 22 Braunschweig H, Chiu C.-W, Radacki K, Kupfer T. Angew. Chem. Int. Ed. 2010; 49: 2041
- 23 Ruiz DA, Ung G, Melaimi M, Bertrand G. Angew. Chem. Int. Ed. 2013; 52: 7590
- 24 Lu W, Hu H, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2016; 138: 6650
- 25 Arrowsmith M, Mattock JD, Hagspiel S, Krummenacher I, Vargas A, Braunschweig H. Angew. Chem. Int. Ed. 2018; 57: 15272
- 26 Cid J, Gulyás H, Carbó JJ, Fernández E. Chem. Soc. Rev. 2012; 41: 3558
- 27 Protchenko AV, Birjkumar KH, Dange D, Schwarz AD, Vidovic D, Jones C, Kaltsoyannis N, Mountford P, Aldridge S. J. Am. Chem. Soc. 2012; 134: 6500
- 28 Protchenko AV, Dange D, Harmer JR, Tang CY, Schwarz AD, Kelly MJ, Phillips N, Tirfoin R, Birjkumar KH, Jones C, Kaltsoyannis N, Mountford P, Aldridge S. Nat. Chem. 2014; 6: 315
- 29 Rit A, Campos J, Niu H, Aldridge S. Nat. Chem. 2016; 8: 1022
- 30 Asami S.-s, Okamoto M, Suzuki K, Yamashita M. Angew. Chem. Int. Ed. 2016; 55: 12827
- 31 Asami S.-s, Ishida S, Iwamoto T, Suzuki K, Yamashita M. Angew. Chem. Int. Ed. 2017; 56: 1658
- 32 Tian M, Zhang J, Yang H, Cui C. J. Am. Chem. Soc. 2020; 142: 4131
- 33 Soleilhavoup M, Bertrand G. Angew. Chem. Int. Ed. 2017; 56: 10282
- 34 Dahcheh F, Martin D, Stephan DW, Bertrand G. Angew. Chem. Int. Ed. 2014; 53: 13159
- 35 Ledet AD, Hudnall TW. Dalton Trans. 2016; 45: 9820
- 36 Pranckevicius C, Jimenéz-Halla JO. C, Kirsch M, Krummenacher I, Braunschweig H. J. Am. Chem. Soc. 2018; 140: 10524
- 37 Légaré M.-A, Pranckevicius C, Braunschweig H. Chem. Rev. 2019; 119: 8231
- 38 Légaré M.-A, Bélanger-Chabot G, Dewhurst RD, Welz E, Krummenacher I, Engels B, Braunschweig H. Science 2018; 359: 896
- 39 Légaré M.-A, Rang M, Bélanger-Chabot G, Schweizer JI, Krummenacher I, Bertermann R, Arrowsmith M, Holthausen MC, Braunschweig H. Science 2019; 363: 1329
- 40 Légaré M.-A, Bélanger-Chabot G, Rang M, Dewhurst RD, Krummenacher I, Bertermann R, Braunschweig H. Nat. Chem. 2020; 12: 1076
- 41 Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G. Science 2011; 333: 610
- 42 Ruiz DA, Melaimi M, Bertrand G. Chem. Commun. 2014; 50: 7837
- 43a Kong L, Li Y, Ganguly R, Vidovic D, Kinjo R. Angew. Chem. Int. Ed. 2014; 53: 9280
- 43b Kong L, Lu W, Li Y, Ganguly R, Kinjo R. Inorg. Chem. 2017; 56: 5586
- 43c Kong L, Lu W, Li Y, Ganguly R, Kinjo R. J. Am. Chem. Soc. 2016; 138: 8623
- 43d Kong L, Lu W, Li Y, Ganguly R, Kinjo R. Angew. Chem. Int. Ed. 2016; 55: 14718
- 44 Kong L, Ganguly R, Li Y, Kinjo R. Chem. Sci. 2015; 6: 2893
- 45a Pranckevicius C, Herok C, Fantuzzi F, Engels B, Braunschweig H. Angew. Chem. Int. Ed. 2019; 58: 12893
- 45b Arrowsmith M, Schweizer JI, Heinz M, Härterich M, Krummenacher I, Holthausen MC, Braunschweig H. Chem. Sci. 2019; 10: 5095
- 45c Arrowsmith M, Auerhammer D, Bertermann R, Braunschweig H, Bringmann G, Celik MA, Dewhurst RD, Finze M, Grüne M, Hailmann M, Hertle T, Krummenacher I. Angew. Chem. Int. Ed. 2016; 55: 14464
- 46 Wang H, Zhang J, Lin Z, Xie Z. Chem. Commun. 2015; 51: 16817
- 47 Wang H, Wu L, Lin Z, Xie Z. J. Am. Chem. Soc. 2017; 139: 13680
- 48 Wang H, Zhang J, Lee HK, Xie Z. J. Am. Chem. Soc. 2018; 140: 3888
- 49 Braunschweig H, Dewhurst RD, Hupp F, Nutz M, Radacki K, Tate CW, Vargas A, Ye Q. Nature 2015; 522: 327
- 50 Kong L, Ganguly R, Li Y, Kinjo R. Chem. Eur. J. 2016; 22: 1922
- 51 Wang H, Wu L, Lin Z, Xie Z. Angew. Chem. Int. Ed. 2018; 57: 8708
- 52a McConnell CR, Liu S.-Y. Chem. Soc. Rev. 2019; 48: 3436
- 52b Giustra ZX, Liu S.-Y. J. Am. Chem. Soc. 2018; 140: 1184
- 54 Su B, Li Y, Ganguly R, Lim J, Kinjo R. J. Am. Chem. Soc. 2015; 137: 11274
- 55 Wu D, Kong L, Li Y, Ganguly R, Kinjo R. Nat. Commun. 2015; 6: 7340
- 56a Wu D, Li Y, Ganguly R, Kinjo R. Chem. Commun. 2017; 53: 12734
- 56b Wu D, Ganguly R, Li Y, Hoo SN, Hirao H, Kinjo R. Chem. Sci. 2015; 6: 7150
- 57 Wu D, Wang R, Li Y, Ganguly R, Hirao H, Kinjo R. Chem. 2017; 3: 134
- 58 Wang B, Li Y, Ganguly R, Hirao H, Kinjo R. Nat. Commun. 2016; 7: 11871
- 59a Wang B, Kinjo R. Chem. Sci. 2019; 10: 2088
- 59b Wang B, Koshino K, Kinjo R. Chem. Commun. 2019; 55: 13012
- 59c Wang B, Kinjo R. Tetrahedron 2018; 74: 7273
- 60 Su Y, Li Y, Ganguly R, Kinjo R. Angew. Chem. Int. Ed. 2018; 57: 7846
- 61 Su Y, Do DC. H, Li Y, Kinjo R. J. Am. Chem. Soc. 2019; 141: 13729
- 62 Ota K, Kinjo R. Angew. Chem. Int. Ed. 2020; 59: 6572
For selected reviews, see:
For selected reviews, see: