Subscribe to RSS
DOI: 10.1055/a-1400-5581
Asymmetric Organocatalysis with Chiral Covalent Organic Frameworks
Funding Information This work was supported by the National Key Research and Development Program of China (2016YFA0602900) and Chinese Academy of Sciences.
Abstract
Inspired by Mother Nature, the use of chiral covalent organic frameworks as heterogeneous asymmetric organocatalysts has arisen over the last decade as a new method in enantioselective synthesis. In this Short Review, sophisticated design of these polymeric materials and their application in asymmetric organocatalysis will be discussed.
Key words
chiral covalent organic frameworks - post-modification - asymmetric organocatalysis - enantioselective synthesisDedicated to Prof. emeritus Dong Wang on the occasion of his 80th birthday.
Publication History
Received: 14 December 2020
Accepted: 24 February 2021
Accepted Manuscript online:
25 February 2021
Article published online:
11 May 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Wagnière GH. On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image. John Wiley & Sons; Weinheim: 2007
- 2 Cintas P. Angew. Chem. Int. Ed. 2007; 46: 4016
- 3 Calcaterra A, D'Acquarica I. J. Pharm. Biomed. Anal. 2018; 147: 323
- 4 Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5348
- 5 Carreira EM, Jacobsen EN, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis. Springer; Berlin: 1999
- 6 Ojima I. Ed. Catalytic Asymmetric Synthesis. John Wiley & Sons; Weinheim: 2010
- 7 Itsuno IS, Parvez MM, Haraguchi N. Polym. Chem. 2011; 2: 1942
- 8 Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
- 9 Ding S.-Y, Gao J, Wang Q, Zhang Y, Song W.-G, Su C.-Y, Wang W. J. Am. Chem. Soc. 2011; 133: 19816
- 10 Furukawa H, Yaghi OM. J. Am. Chem. Soc. 2009; 131: 8875
- 11 Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. J. Am. Chem. Soc. 2012; 134: 19524
- 12 Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O'Keeffe M, Yaghi OM. J. Am. Chem. Soc. 2009; 131: 4570
- 13 Ding S.-Y, Wang W. Chem. Soc. Rev. 2013; 42: 548
- 14 Feng X, Ding X, Jiang D. Chem. Soc. Rev. 2012; 41: 6010
- 15 Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev. 2020; 120: 8814
- 16 Huang N, Wang P, Jiang D. Nat. Rev. Mater. 2016; 1: 16068
- 17 Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc. 2019; 141: 1807
- 18 Guan Q, Zhou L.-L, Li W.-Y, Li Y.-A, Dong Y.-B. Chem. Eur. J. 2020; 26: 5583
- 19 Haug WK, Moscarello EM, Wolfson ER, McGrier PL. Chem. Soc. Rev. 2020; 49: 839
- 20 Liu J, Wang N, Ma L. Chem. Asian J. 2020; 15: 338
- 21 Sun T, Xie J, Guo W, Li D.-S, Zhang Q. Adv. Energy Mater. 2020; 10: 1904199
- 22 Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Chem. Soc. Rev. 2020; 49: 708
- 23 Xu H, Chen X, Gao J, Lin J, Addicoat M, Irle S, Jiang D. Chem. Commun. 2014; 50: 1292
- 24 Xu H, Gao J, Jiang D. Nat. Chem. 2015; 7: 905
- 25 Xu H.-S, Ding S.-Y, An W.-K, Wu H, Wang W. J. Am. Chem. Soc. 2016; 138: 11489
- 26 Wang L.-K, Zhou J.-J, Lan Y.-B, Ding S.-Y, Yu W, Wang W. Angew. Chem. Int. Ed. 2019; 58: 9443
- 27 Wang J.-C, Kan X, Shang J.-Y, Qiao H, Dong Y.-B. J. Am. Chem. Soc. 2020; 142: 16915
- 28 Zhang J, Han X, Wu X, Liu Y, Cui Y. ACS Sustainable Chem. Eng. 2019; 7: 5065
- 29 Zhang J, Han X, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc. 2017; 139: 8277
- 30 Dong J, Han X, Liu Y, Li H, Cui Y. Angew. Chem. Int. Ed. 2020; 59: 13722
- 31 Han X, Yuan C, Hou B, Liu L, Li H, Liu Y, Cui Y. Chem. Soc. Rev. 2020; 49: 6248
- 32 Ma HC, Zou J, Li XT, Chen GJ, Dong YB. Chem. Eur. J. 2020; 26: 13754
- 33 Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc. 2016; 138: 12332
- 34 Han X, Zhang J, Huang J, Wu X, Yuan D, Liu Y, Cui Y. Nat. Commun. 2018; 9: 1294
- 35 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 36 Pihko PM, Majander I, Erkkilä A. Top. Curr. Chem. 2010; 291: 29
- 37 Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
- 38 Notz W, Tanaka F, Barbas III CF. Acc. Chem. Res. 2004; 37: 580
- 39 List B. Acc. Chem. Res. 2004; 37: 548
- 40 List B. Tetrahedron 2002; 58: 5573
- 41 Berner OM, Tedeschi L, Enders D. Eur. J. Org. Chem. 2002; 2002: 1877
- 42 Luo S, Xu H, Mi X, Li J, Zheng X, Cheng JP. J. Org. Chem. 2006; 71: 9244
- 43 Kitanosono T, Kobayashi S. Chem. Eur. J. 2020; 26: 9408
- 44 Kobayashi S. Pure Appl. Chem. 2007; 79: 235
- 45 van Der Helm MP, Klemm B, Eelkema R. Nat. Rev. Mater. 2019; 3: 491
- 46 Wei C, Li Z, Li C.-J. Synlett 2004; 1472
- 47 Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
- 48 Gotoh H, Hayashi Y. C–C Bond Formation: Aldol Reaction with Non-Proline Derivatives. In: Comprehensive Chirality. Carreira EM, Yamamoto H. Elsevier Ltd.; Amsterdam: 2012: 125-156
- 49 Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
- 50 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 51 Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 52 Usman M, Zhang XW, Wu D, Guan ZH, Liu WB. Org. Chem. Front. 2019; 6: 1905
- 53 Trillo P, Gómez-Martínez M, Alonso DA, Baeza A. Synlett 2015; 95
- 54 Kang X, Wu X, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci. 2020; 11: 1494
- 55 Zhang Z, Xie F, Jia J, Zhang W. J. Am. Chem. Soc. 2010; 132: 15939