Synthesis 2021; 53(14): 2494-2502
DOI: 10.1055/a-1399-3823
paper

N-Acylbenzotriazoles as Proficient Substrates for an Easy Access to Ureas, Acylureas, Carbamates, and Thiocarbamates via Curtius Rearrangement Using Diphenylphosphoryl Azide (DPPA) as Azide Donor

Mangal S. Yadav
,
Sumt K. Singh
,
Anand K. Agrahari
,
Anoop S. Singh
,
The authors sincerely thank the Science and Engineering Research Board (SERB), New Delhi (Grant No. EMR/2016/001123) and the Council of Scientific and Industrial Research (CSIR), New Delhi [Scheme No. 02(0345)/19/EMR-II] for funding. M.S.Y. and A.K.A. acknowledge CSIR for fellowships (SRF), while S.K.S. thanks the University Grants Commission (UGC) for a JRF.


This manuscript is dedicated to the late Prof. Alan R. Katritzky for his notable contributions to benzotriazole chemistry.

Abstract

A diverse range of ureas, N-acylureas, carbamates, and thiocarbamates has been synthesized in good to excellent yields by reacting N-acylbenzotriazoles individually with amines or amides or phenols or thiols in the presence of diphenylphosphoryl azide (DPPA) as a suitable azide donor in anhydrous toluene at 110 °C for 3–4 hours. In this route, DPPA was found to be a good alternative to trimethylsilyl azide and sodium azide for the azide donor in Curtius degradation. The high reaction yields, one-pot and metal-free conditions, straightforward nature, easy handling, use of readily available reagents, and in many cases avoidance of column chromatography are the notable features of the devised protocol.

Supporting Information



Publication History

Received: 13 January 2021

Accepted after revision: 24 February 2021

Accepted Manuscript online:
24 February 2021

Article published online:
16 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Katritzky AR, Kirichenko N, Rogovoy BV. ARKIVOC 2003; (viii): 8
    • 1b Ghosh AK, Brindisi M. J. Med. Chem. 2020; 63: 2751
    • 1c Barker TJ, Duncan KK, Otrubova K, Boger DL. ACS Med. Chem. Lett. 2013; 4: 985
    • 1d Sidda JD, Song L, Poon V, Al-Bassam M, Lazos O, Buttner MJ, Challis GL, Corre C. Chem. Sci. 2014; 5: 86
    • 1e Schwartz BD, Skinner-Adams TS, Andrews KT, Coster MJ, Edstein MD, MacKenzie D, Charman SA, Koltun M, Blundell S, Campbell A, Pouwer RH, Quinn RJ, Beattie KD, Healy PC, Davis RA. Org. Biomol. Chem. 2015; 13: 1558
    • 1f Abad A, Agullo C, Cuñat AC, Jiménez R, Vilanova C. J. Agric. Food Chem. 2004; 52: 4675
    • 1g Vishnyakova TP, Golubeva IA, Glebova EV. Russ. Chem. Rev. 1985; 54: 249
    • 2a Bogolubsky AV, Moroz YS, Mykhailiuk PK, Granat DS, Pipko SE, Konovets AI, Doroschuk R, Tolmachev A. ACS Comb. Sci. 2014; 16: 303
    • 2b Khan KM, Saeed S, Ali M, Gohar M, Zahid J, Khan A, Perveen S, Choudhary MI. Bioorg. Med. Chem. 2009; 17: 2447
    • 3a Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM. N. Engl. J. Med. 2007; 356: 125
    • 3b Kang Q, Gong J, Wang M, Wang Q, Chen F, Cheng K.-W. J. Agric. Food Chem. 2019; 67: 13939
  • 4 Steward HW, Quinone NQ, Lee EG, Denton JJ. J. Org. Chem. 1953; 18: 1478
  • 6 Camp AA, Batres MA, Williams WC, Lehmann DM. Environ. Entomol. 2020; 49: 203
  • 7 Morales SI, Martínez AM, Figueroa JI, Campos-García J, Gómez-Tagle A, Lobit P, Smagghe G, Pineda S. Chemosphere 2019; 235: 76
  • 8 Kumar H, Singh K. J. Pharmacogn. Phytochem. 2020; 9: 2208
  • 9 Bisane KD, Shinde BD, Saxena SP, Patil P. Pestic. Res. J. 2019; 31: 48
  • 10 Klabunde T, Wendt KU, Kadereit D, Brachvogel V, Burger H.-J, Herling AW, Oikonomakos NG, Kosmopoulou MN, Schmoll D, Sarubbi E, von Roedern E, Schönafinger K, Defossa E. J. Med. Chem. 2005; 48: 6178
    • 11a Lemoucheux L, Rouden J, Ibazizene M, Sobrio F, Lasne M.-C. J. Org. Chem. 2003; 68: 7289
    • 11b Majer P, Randad RS. J. Org. Chem. 1994; 59: 1937
    • 11c Scialdone MA, Shuey SW, Soper P, Hamuro Y, Burns DM. J. Org. Chem. 1998; 63: 4802
    • 11d McReynolds MD, Sprott KT, Hanson PR. Org. Lett. 2002; 4: 4673
  • 12 Bora P, Bez G. Chem. Commun. 2018; 54: 8363
  • 13 Nagaraju N, Kuriakose G. Green Chem. 2002; 4: 269
    • 14a Wang L, Wang H, Li G, Min S, Xiang F, Liu S, Zheng W. Adv. Synth. Catal. 2018; 360: 4585
    • 14b Li Z, Xu S, Huang B, Yuan C, Chang W, Fu B, Jiao L, Wang P, Zhang Z. J. Org. Chem. 2019; 84: 9497
  • 15 Bjerglund K, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2012; 77: 3793
    • 16a Singh AS, Kumar D, Mishra N, Tiwari VK. RSC Adv. 2016; 6: 84512
    • 16b Singh AS, Agrahari AK, Singh SK, Yadav MS, Tiwari VK. Synthesis 2019; 51: 3443
    • 16c Singh AS, Agrahari AK, Singh SK, Yadav MS, Tiwari VK. SYNFORM 2019; 10: A152
    • 17a Batey RA, Yoshina-Ishii C, Taylor SD, Santhakumar V. Tetrahedron Lett. 1999; 40: 2669
    • 17b Isobe T, Ishikawa T. J. Org. Chem. 1999; 64: 5832
    • 17c Wood TF, Gardner JH. J. Am. Chem. Soc. 1941; 63: 2741
    • 17d Bowden K, Chana RS. J. Chem. Soc., Perkin Trans. 2 1990; 2163
    • 17e Mizuno T, Nishiguchi I, Okushi T, Hirashima T. Tetrahedron Lett. 1991; 32: 6867
    • 17f Chin-Hsien W. Synthesis 1981; 622
    • 18a Weijlard J, Tishler M. J. Am. Chem. Soc. 1951; 73: 1497
    • 18b Riemschneider R, Kühl A. Monatsh. Chem. 1953; 84: 1238
    • 19a Tilles H. J. Am. Chem. Soc. 1959; 81: 714
    • 19b Reddy TI, Bhawal BM, Rajappa S. Tetrahedron Lett. 1992; 33: 2857
  • 20 Bao P, Wang L, Yue H, Shao Y, Wen J, Yang D, Zhao X, Wang H, Wei W. J. Org. Chem. 2019; 84: 2976
    • 21a Bao W.-H, He M, Wang J.-T, Peng X, Sung M, Tang Z, Jiang S, Cao Z, He W.-M. J. Org. Chem. 2019; 84: 6065
    • 21b Mizuno T, Nishiguchi I, Sonada N. Tetrahedron 1994; 50: 5669
    • 22a Katritzky AR, Suzuki K, Wang Z. Synlett 2005; 1656
    • 22b Wet-osot S, Duangkamol C, Phakhodee W, Pattarawarapan M. ACS Comb. Sci. 2016; 18: 279
    • 22c Katritzky AR, Rachwal S. Chem. Rev. 2010; 110: 1564
  • 23 Duangkamol C, Wangngae S, Pattarawarapan M, Phakhodee W. Eur. J. Org. Chem. 2014; 7109
    • 24a Katritzky AR, Zhang Y, Singh SK. Synthesis 2003; 2795
    • 24b Singh AS, Agrahari AK, Mishra N, Singh M, Tiwari VK. Synthesis 2019; 51: 470
    • 26a Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
    • 26b Agrahari AK, Singh AK, Singh AS, Singh M, Maji M, Yadav S, Rajkhowa S, Prakash P, Tiwari VK. New J. Chem. 2020; 44: 19300
  • 27 Yadav MS, Singh AS, Agrahari AK, Mishra N, Tiwari VK. ACS Omega 2019; 4: 6681
  • 28 Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2013; 54: 5099
  • 29 Atanasova IA, Petrov JS, Mollov NM. Synthesis 1987; 734
  • 30 Yang G, Chen Z, Zhang H. Green Chem. 2003; 5: 441
  • 31 Lebel H, Leogane O. Org. Lett. 2006; 8: 5717
  • 32 Du C, Chen Y. Chin. J. Chem. 2020; 38: 1057
  • 33 Chamni S, Zhang J, Zou H. Green Chem. Lett. Rev. 2020; 13: 246
  • 34 Gavade S, Balaskar R, Mane M, Pabrekar PN, Mane D. Synth. Commun. 2012; 42: 1704
  • 35 Alder T, Bonjoch J, Clayden J, Font-Bardia M, Pickworth M, Solans X, Sole D, Vallverdu L. Org. Biomol. Chem. 2005; 3: 3173
  • 36 Kima H.-K, Lee A. Org. Biomol. Chem. 2016; 14: 7345
  • 37 Isobe T. J. Org. Chem. 1999; 64: 5832