RSS-Feed abonnieren
DOI: 10.1055/a-1395-2001
Antibiotikaeinsatz beim akuten Durchfall des Hundes – Übersicht potenzieller Risiken, Indikationen und Alternativen
Use of antimicrobials in acute canine diarrhea – overview of potential risks, indications and alternatives
Zusammenfassung
Antibiotika werden bei Hunden mit Magen-Darm-Problemen wie akutem Durchfall (AD) in Deutschland häufig eingesetzt. In Einklang mit den weltweiten Bemühungen, den Antibiotikaeinsatz einzuschränken, soll diese Literaturübersicht einen Überblick über den rationalen und sinnvollen Einsatz von Antibiotika beim AD liefern. Antibiotika können zu gastrointestinalen Nebenwirkungen, negativen Auswirkungen auf die intestinale Mikrobiota und zur Entstehung von Resistenzen führen. Es gibt auch Hinweise darauf, dass chronische immunologische Erkrankungen durch die Verabreichung von Antibiotika ausgelöst werden können. Daher sollten sie bei unkompliziertem AD ohne Anzeichen einer Sepsis oder einer systemischen Entzündungsreaktion nicht verabreicht werden. Darüber hinaus spielen enteropathogene Bakterien bei der Ätiologie akuter Durchfälle beim Hund kaum eine Rolle. Bei bestimmten Krankheitsbildern, wie dem akuten hämorrhagischen Durchfallsyndrom, wird eine Antibiotikatherapie nur dann empfohlen, wenn Hinweise auf eine bakterielle Translokation mit nachfolgender Sepsis vorliegen. Dagegen ist die Gabe von Antibiotika bei der Parvovirose aufgrund der immunologischen Inkompetenz des Hundes, die durch die hochgradige Neutropenie verursacht wird, unumgänglich.
Abstract
In Germany, antibiotics are frequently used in dogs with gastrointestinal disorders such as acute diarrhea. In line with global efforts to limit antibiotic use, this literature review aims to provide a guideline for the rational and judicious use of antibiotics in acute canine diarrhea. Antibiotics can lead to gastrointestinal side effects and may exert a negative influence on the intestinal microbiota in addition to increasing the occurrence of resistant bacteria. There is also evidence that chronic immunological diseases may be triggered by the administration of antibiotics. Therefore, these should not be administered in uncomplicated acute diarrhea without signs of sepsis or systemic inflammatory reaction. In addition, enteropathogenic bacteria usually do not play a role in the etiology of acute diarrhea. For select clinical entities such as acute hemorrhagic diarrhea syndrome, antibiotic therapy should only be recommended in cases displaying signs of bacterial translocation with subsequent sepsis. In the case of parvovirosis, on the other hand, the administration of antibiotics is unavoidable due to the immunological incompetence of the dog caused by the accompanying severe neutropenia.
Publikationsverlauf
Eingereicht: 31. Dezember 2020
Angenommen: 09. Februar 2021
Artikel online veröffentlicht:
26. April 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Robbins SN, Goggs R, Lhermie G. et al. Antimicrobial Prescribing Practices in Small Animal Emergency and Critical Care. Front Vet Sci 2020; 7: 110
- 2 Lutz B, Lehner C, Schmitt K. et al. Antimicrobial prescriptions and adherence to prudent use guidelines for selected canine diseases in Switzerland in 2016. Vet Rec Open 2020; 7: e000370
- 3 Hur BA, Hardefeldt LY, Verspoor KM. et al. Describing the antimicrobial usage patterns of companion animal veterinary practices; free text analysis of more than 4.4 million consultation records. PLoS One 2020; 15: e0230049
- 4 Hopman NEM, Portengen L, Heederik DJJ. et al. Time trends, seasonal differences and determinants of systemic antimicrobial use in companion animal clinics (2012–2015). Vet Microbiol 2019; 235: 289-294
- 5 Guardabassi L, Prescott JF. Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Vet Clin North Am Small Anim Pract 2015; 45: 361-376 vii.
- 6 Kahn LH. Antimicrobial resistance: a One Health perspective. Trans R Soc Trop Med Hyg 2017; 111: 255-260
- 7 Smith HW. Antibiotic-resistant bacteria in animals: the dangers to human health. British Vet J 1974; 130: 110-119
- 8 Beckmann K, Favrot C, Fischer NM. et al. Strategie Antibiotikaresistenzen. Umsichtiger Einsatz von Antibiotika bei Hunden und Katzen. Therapieleitfaden für Tierärztinnen und Tierärzte. 2019 Bern: https://www.blv.admin.ch/blv/de/home/tiere/tierarzneimittel/antibiotika/nationale-strategie-antibiotikaresistenzen--star--/sachgemaesser-antibiotikaeinsatz.html Stand: 25.12.2020
- 9 Weese JS, Giguère S, Guardabassi L. et al. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J Vet Intern Med 2015; 29: 487-498
- 10 Jessen L, Damborg P, Spohr A. et al. Antibiotic Use Guidelines for Companion Animal Practice (2nd ed.). ISBN 978–87–870703–0–0; 2018 https://www.alimenti-salute.it/sites/default/files/animali%20da%20compagnia%20Antibiotic%20Guidelines%20Danimarca.pdf Stand: 25.12.2020
- 11 Singleton DA, Noble PJM, Sánchez-Vizcaíno F. et al. Pharmaceutical Prescription in Canine Acute Diarrhoea: A Longitudinal Electronic Health Record Analysis of First Opinion Veterinary Practices. Front Vet Sci 2019; 6: 218
- 12 Singleton DA, Arsevska E, Smyth S. et al. Small animal disease surveillance: gastrointestinal disease, antibacterial prescription and Tritrichomonas foetus. Vet Rec 2019; 184: 211-216
- 13 De Briyne N, Atkinson J, Pokludova L. et al. Antibiotics used most commonly to treat animals in Europe. Vet Rec 2014; 175: 325
- 14 German AJ, Halladay LJ, Noble PJ. First-choice therapy for dogs presenting with diarrhoea in clinical practice. Vet Rec 2010; 167: 810-814
- 15 Adams HR. Acute adverse effects of antibiotics. J Am Vet Med Assoc 1975; 166: 983-987
- 16 Kunkle GA, Sundlof S, Keisling K. Adverse side effects of oral antibacterial therapy in dogs and cats: an epidemiologic study of pet owners’ observations. J Am Anim Hosp Assoc 1995; 31: 46-55
- 17 McFarland LV. Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol 2008; 3 (05) 563-578
- 18 Owens Jr RC, Donskey CJ, Gaynes RP. et al. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 2008; 46: S19-S31
- 19 Torres-Henderson C, Summers S, Suchodolski J. et al. Effect of Enterococcus Faecium Strain SF68 on Gastrointestinal Signs and Fecal Microbiome in Cats Administered Amoxicillin-Clavulanate. Top Companion Anim Med 2017; 32: 104-108
- 20 Whittemore JC, Moyers TD, Price JM. Randomized, controlled, crossover trial of prevention of antibiotic-induced gastrointestinal signs using a synbiotic mixture in healthy research dogs. J Vet Intern Med 2019; 33: 1619-1626
- 21 Stokes JE, Price JM, Whittemore JC. Randomized, Controlled, Crossover trial of Prevention of Clindamycin-Induced Gastrointestinal Signs Using a Synbiotic in Healthy Research Cats. J Vet Intern Med 2017; 31: 1406-1413
- 22 Noli C, Koeman JP, Willemse T. A retrospective evaluation of adverse reactions to trimethoprim-sulphonamide combinations in dogs and cats. Vet Q 1995; 17: 123-128
- 23 Whittemore JC, Stokes JE, Laia NL. et al. Short and long-term effects of a synbiotic on clinical signs, the fecal microbiome, and metabolomic profiles in healthy research cats receiving clindamycin: a randomized, controlled trial. Peer J 2018; 6: e5130
- 24 Schulz BS, Hupfauer S, Ammer H. et al. Suspected side effects of doxycycline use in dogs – a retrospective study of 386 cases. Vet Rec 2011; 169: 229
- 25 Pilla R, Gaschen FP, Barr JW. et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J Vet Intern Med 2020; 34: 1853-1866
- 26 Werner M, Suchodolski JS, Straubinger RK. et al. Effect of amoxicillin-clavulanic acid on clinical scores, intestinal microbiome, and amoxicillin-resistant Escherichia coli in dogs with uncomplicated acute diarrhea. J Vet Intern Med 2020; 34: 1166-1176
- 27 Langlois DK, Koenigshof AM, Mani R. Metronidazole treatment of acute diarrhea in dogs: A randomized double blinded placebo-controlled clinical trial. J Vet Intern Med 2020; 34: 98-104
- 28 Shmalberg J, Montalbano C, Morelli G. et al. A Randomized Double Blinded Placebo-Controlled Clinical Trial of a Probiotic or Metronidazole for Acute Canine Diarrhea. Front Vet Sci 2019; 6: 163
- 29 Manchester AC, Webb CB, Blake AB. et al. Long-term impact of tylosin on fecal microbiota and fecal bile acids of healthy dogs. J Vet Intern Med 2019; 33: 2605-2617
- 30 Lawrence M, Kukanich K, Kukanich B. et al. Effect of cefovecin on the fecal flora of healthy dogs. Vet J 2013; 198: 259-266
- 31 Grønvold AM, L’Abée-Lund TM, Sørum H. et al. Changes in fecal microbiota of healthy dogs administered amoxicillin. FEMS Microbiol Ecol 2010; 71: 313-326
- 32 McFarland L. Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Digest Dis 1998; 16: 292-307
- 33 Damrongmanee A, Ukarapol N. Incidence of antibiotic-associated diarrhea in a pediatric ambulatory care setting. J Med Assoc Thailand 2007; 90: 513
- 34 Blot E, Escande MC, Besson D. et al. Outbreak of Clostridium difficile-related diarrhoea in an adult oncology unit: risk factors and microbiological characteristics. J Hosp Inf 2003; 53: 187-192
- 35 McFarland LV. Update on the changing epidemiology of Clostridium difficile-associated disease. Nat Clin Pract Gastroenterol Hepatol 2008; 5: 40-48
- 36 Wren SM, Ahmed N, Jamal A. et al. Preoperative oral antibiotics in colorectal surgery increase the rate of Clostridium difficile colitis. Arch Surg 2005; 140: 752-756
- 37 Turck D, Bernet J-P, Marx J. et al. Incidence and risk factors of oral antibiotic-associated diarrhea in an outpatient pediatric population. J Pediatr Gastroenterol Nutr 2003; 37: 22-26
- 38 Hoban DJ. Antibiotics and collateral damage. Clin Cornerstone 2003; (Suppl. 03) S12-20
- 39 Tamma PD, Avdic E, Li DX. et al. Association of Adverse Events With Antibiotic Use in Hospitalized Patients. JAMA Intern Med 2017; 177: 1308-1315
- 40 Mullish BH, Williams HR. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin Med (Lond) 2018; 18: 237-241
- 41 Fekety R. Guidelines for the diagnosis and management of Clostridium difficile-associated diarrhea and colitis. Am J Gastroenterol 1997; 92 (05) 739-750
- 42 Levy DG, Stergachis A, McFarland LV. et al. Antibiotics and Clostridium difficile diarrhea in the ambulatory care setting. Clin Ther 2000; 22: 91-102
- 43 Monaghan T, Boswell T, Mahida YR. Recent advances in Clostridium difficile-associated disease. Postgrad Med J 2009; 85: 152-162
- 44 Archibald LK, Banerjee SN, Jarvis WR. Secular trends in hospital-acquired Clostridium difficile disease in the United States, 1987–2001. J Infect Dis 2004; 189: 1585-1589
- 45 Surawicz C, McFarland L. Pseudomembranous colitis: causes and cures. Digestion 1999; 60: 91-100
- 46 Willard MD, Berridge B, Braniecki A. et al. Possible antibiotic-associated colitis in a dog. J Am Vet Med Assoc 1998; 213: 1775-1779 1753–1774
- 47 Sommer F, Bäckhed F. The gut microbiota – masters of host development and physiology. Nat Rev Microbiol 2013; 11: 227-238
- 48 Behr C, Slopianka M, Haake V. et al. Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. Toxicol Appl Pharmacol 2019; 363: 79-87
- 49 Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 2016; 65: 1906-1915
- 50 Neuman H, Forsythe P, Uzan A. et al. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev 2018; 42: 489-499
- 51 Willmann M, Vehreschild M, Biehl LM. et al. Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC Biol 2019; 17: 76
- 52 Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017; 279: 90-105
- 53 Pilla R, Suchodolski JS. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front Vet Sci 2019; 6: 498
- 54 Haak BW, Prescott HC, Wiersinga WJ. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Front Immunol 2018; 9: 2042
- 55 Khodamoradi Y, Kessel J, Vehreschild JJ. et al. The Role of Microbiota in Preventing Multidrug-Resistant Bacterial Infections. Dtsch Arztebl Int 2019; 116: 670-676
- 56 Jernberg C, Löfmark S, Edlund C. et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010; 156: 3216-3223
- 57 Igarashi H, Maeda S, Ohno K. et al. Effect of oral administration of metronidazole or prednisolone on fecal microbiota in dogs. PLoS One 2014; 9: e107909
- 58 Espinosa-Gongora C, Jessen LR, Kieler IN. et al. Impact of oral amoxicillin and amoxicillin/clavulanic acid treatment on bacterial diversity and β-lactam resistance in the canine faecal microbiota. J Antimicrob Chemother 2020; 75: 351-361
- 59 Paul A, Stayt J. The intestinal microbiome in dogs and cats with diarrhoea as detected by a faecal polymerase chain reaction-based panel in Perth, Western Australia. Aust Vet J 2019; 97: 418-421
- 60 Honneffer JB, Minamoto Y, Suchodolski JS. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J Gastroenterol 2014; 20: 16489-16497
- 61 Connelly S, Fanelli B, Hasan NA. et al. Oral Beta-Lactamase Protects the Canine Gut Microbiome from Oral Amoxicillin-Mediated Damage. Microorganisms 2019; 7 (05) 150
- 62 Redfern A, Suchodolski J, Jergens A. Role of the gastrointestinal microbiota in small animal health and disease. Vet Rec 2017; 181: 370
- 63 Fjalstad JW, Esaiassen E, Juvet LK. et al. Antibiotic therapy in neonates and impact on gut microbiota and antibiotic resistance development: a systematic review. J Antimicrob Chemother 2018; 73: 569-580
- 64 Suchodolski JS, Dowd SE, Westermarck E. et al. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16 S rRNA gene sequencing. BMC Microbiol 2009; 9: 210
- 65 Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004; 126: 1620-1633
- 66 Rahimi R, Nikfar S, Rezaie A. et al. A meta-analysis of antibiotic therapy for active ulcerative colitis. Dig Dis Sci 2007; 52: 2920-2925
- 67 Khan KJ, Ullman TA, Ford AC. et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 2011; 106: 661-673
- 68 Rashid M-U, Zaura E, Buijs MJ. et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin Infect Dis 2015; 60: S77-S84
- 69 Jakobsson HE, Jernberg C, Andersson AF. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PloS One 2010; 5: e9836
- 70 Zimmermann P, Curtis N. Effect of intrapartum antibiotics on the intestinal microbiota of infants: a systematic review. Arch Dis Child Fetal Neonatal Ed 2020; 105: 201-208
- 71 AlShawaqfeh MK, Wajid B, Minamoto Y. et al. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol Ecol 2017; 93: fix136-fix136
- 72 Chaitman J, Ziese AL, Pilla R. et al. Fecal Microbial and Metabolic Profiles in Dogs With Acute Diarrhea Receiving Either Fecal Microbiota Transplantation or Oral Metronidazole. Front Vet Sci 2020; 7: 192
- 73 Giaretta PR, Rech RR, Guard BC. et al. Comparison of intestinal expression of the apical sodium-dependent bile acid transporter between dogs with and without chronic inflammatory enteropathy. J Vet Intern Med 2018; 32: 1918-1926
- 74 Wang S, Martins R, Sullivan MC. et al. Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Microbiome 2019; 7: 126
- 75 Krums LM, Gubina AV, Parfenov AI. et al. [The role of bile acids in the pathogenesis of chronic diarrhea]. Eksp Klin Gastroenterol 2012; 3: 35-39
- 76 Lembcke B. [Causes and clinical diagnosis of chologenic diarrhea]. Z Gastroenterol 1989; 27: 279-284
- 77 Appleby RN, Walters JR. The role of bile acids in functional GI disorders. Neurogastroenterol Motil 2014; 26: 1057-1069
- 78 Frey H-H, Löscher W. Lehrbuch der Pharmakologie und Toxikologie für die Veterinärmedizin. Stuttgart: Enke; 2002
- 79 Löfmark S, Jernberg C, Jansson JK. et al. Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 2006; 58: 1160-1167
- 80 Allegretti JR, Kao D, Phelps E. et al. Risk of Clostridium difficile Infection with Systemic Antimicrobial Therapy Following Successful Fecal Microbiota Transplant: Should We Recommend Anti-Clostridium difficile Antibiotic Prophylaxis?. Dig Dis Sci 2019; 64: 1668-1671
- 81 Le Bastard Q, Ward T, Sidiropoulos D. et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep 2018; 8: 6219
- 82 Cammarota G, Gallo A, Bibbò S. Fecal microbiota transplant for C. difficile infection: Just say yes. Anaerobe 2019; 60: 102109
- 83 Espinosa-Gongora C, Shah SQA, Jessen LR. et al. Quantitative assessment of faecal shedding of β-lactam-resistant Escherichia coli and enterococci in dogs. Vet Microbiol 2015; 181: 298-302
- 84 Schmidt VM, Pinchbeck GL, Nuttall T. et al. Antimicrobial resistance risk factors and characterisation of faecal E. coli isolated from healthy Labrador retrievers in the United Kingdom. Prev Vet Med 2015; 119: 31-40
- 85 De Graef E, Decostere A, Devriese L. et al. Antibiotic resistance among fecal indicator bacteria from healthy individually owned and kennel dogs. Microb Drug Resist 2004; 10: 65-69
- 86 Sørum H, Sunde M. Resistance to antibiotics in the normal flora of animals. Vet Res 2001; 32: 227-224
- 87 Cusini A, Herren D, Bütikofer L. et al. Intra-hospital differences in antibiotic use correlate with antimicrobial resistance rate in Escherichia coli and Klebsiella pneumoniae: a retrospective observational study. Antimicrob Resist Infect Control 2018; 7: 89
- 88 Kataoka Y, Umino Y, Ochi H. et al. Antimicrobial susceptibility of enterococcal species isolated from antibiotic-treated dogs and cats. J Vet Med Sci 2014; 76: 1399-1402
- 89 Schmidt VM, Pinchbeck G, McIntyre KM. et al. Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli. J Antimicrob Chemother 2018; 73: 3305-3316
- 90 Damborg P, Gaustad IB, Olsen JE. et al. Selection of CMY-2 producing Escherichia coli in the faecal flora of dogs treated with cephalexin. Vet Microbiol 2011; 151: 404-408
- 91 Vollaard EJ, Clasener HA. Colonization resistance. Antimicrob Agents Chemother 1994; 38: 409-414
- 92 Alexander T, Reuter T, Sharma R. et al. Longitudinal characterization of resistant Escherichia coli in fecal deposits from cattle fed subtherapeutic levels of antimicrobials. Appl Environ Microbiol 2009; 75: 7125-7134
- 93 Harmoinen J, Mentula S, Heikkilä M. et al. Orally Administered Targeted Recombinant Beta-Lactamase Prevents Ampicillin-Induced Selective Pressure on the Gut Microbiota: a Novel Approach to Reducing Antimicrobial Resistance. Antimicrob Agents Chemother 2004; 48: 75-79
- 94 Summers AO. Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 2002; 34: S85-S92
- 95 Monroe S, Polk R. Antimicrobial use and bacterial resistance. Curr Opin Microbiol 2000; 3: 496-50
- 96 Guardabassi L, Kruse H. Overlooked aspects concerning development and spread of antimicrobial resistance. Expert Rev Anti Infect Ther 2003; 1 (03) 359-362
- 97 Bywater R. Veterinary use of antimicrobials and emergence of resistance in zoonotic and sentinel bacteria in the EU. Zoonoses and Public Health. J Vet Med B Infect Dis Vet Public Health 2004; 51 (08/09) 361-363
- 98 Bywater R, Deluyker H, Deroover E. et al. A European survey of antimicrobial susceptibility among zoonotic and commensal bacteria isolated from food-producing animals. J Antimicrob Chem 2004; 54: 744-754
- 99 Damborg P, Top J, Hendrickx AP. et al. Dogs are a reservoir of ampicillin-resistant Enterococcus faecium lineages associated with human infections. Appl Environ Microbiol 2009; 75: 2360-2365
- 100 Bassitta R. Untersuchungen zur Selektion von Resistenzgenen in bayerischen Schweinehaltungsbetrieben und zur Übertragung antibiotikaresistenter E. coli zwischen Tier und Mensch [Dissertation]. München: Ludwig-Maximilians-Universität; 2016
- 101 Kummeling I, Stelma FF, Dagnelie PC. et al. Early life exposure to antibiotics and the subsequent development of eczema, wheeze, and allergic sensitization in the first 2 years of life: the KOALA Birth Cohort Study. Ped 2007; 119: e225-231
- 102 Metsälä J, Lundqvist A, Virta L. et al. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy 2015; 45: 137-145
- 103 Klem F, Wadhwa A, Prokop LJ. et al. Prevalence, Risk Factors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A Systematic Review and Meta-analysis. Gastroentrol 2017; 152: 1042-1054
- 104 Umamaheswari B, Biswal N, Adhisivam B. et al. Persistent diarrhea: risk factors and outcome. Indian J Pediatr 2010; 77: 885-888
- 105 Ungaro R, Bernstein CN, Gearry R. et al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol 2014; 109: 1728-1738
- 106 Batool T, Reece P, Schulze K. et al. Prenatal and early-life predictors of atopy and allergic disease in Canadian children: results of the Family Atherosclerosis Monitoring In earLY life (FAMILY) Study. J Dev Orig Health Dis 2016; 7 (06) 665-671
- 107 Hirsch AG, Pollak J, Glass TA. et al. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin Exp Allergy 2017; 47 (02) 236-244
- 108 Mitre E, Susi A, Kropp LE. et al. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood. JAMA pediatrics 2018; 172: e180315-e180315
- 109 Jedrychowski W, Perera F, Maugeri U. et al. Wheezing and asthma may be enhanced by broad spectrum antibiotics used in early childhood. Concept and results of a pharmacoepidemiology study. J Physiol Pharmacol 2011; 62: 189
- 110 Metsälä J, Lundqvist A, Virta L. et al. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy 2015; 45 (01) 137-145
- 111 Yassour M, Vatanen T, Siljander H. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016; 8 (343) 343ra81
- 112 Gibson MK, Crofts TS, Dantas G. Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 2015; 27: 51-56
- 113 Kilian E, Suchodolski JS, Hartmann K. et al. Long-term effects of canine parvovirus infection in dogs. PLoS One 2018; 13: e0192198
- 114 Kaufmann E, Busch K, Suchodolski J. et al. Langzeitkonsequenzen nach Akutem-Hämorrhagischem-Durchfall-Syndrom (AHDS) beim Hund. Tierarztl Prax Ausg K Kleintiere Heimtiere 2020; 48 (01) 67 (Abstract)
- 115 Schwartz S, Newman B. Vomiting and diarrhoea in dogs. Vet Rec 2013; 172: 136
- 116 Berset-Istratescu CM, Glardon OJ, Magouras I. et al. Follow-up of 100 dogs with acute diarrhoea in a primary care practice. Vet J 2014; 199: 188-190
- 117 Hubbard K, Skelly BJ, McKelvie J. et al. Risk of vomiting and diarrhoea in dogs. Vet Rec 2007; 161: 755-757
- 118 Stavisky J, Radford AD, Gaskell R. et al. A case-control study of pathogen and lifestyle risk factors for diarrhoea in dogs. Prev Vet Med 2011; 99: 185-192
- 119 Pugh CA, Bronsvoort BMC, Handel IG. et al. Incidence rates and risk factor analyses for owner reported vomiting and diarrhoea in Labrador Retrievers – findings from the Dogslife Cohort. Prev Vet Med 2017; 140: 19-29
- 120 Saevik BK, Skancke EM, Trangerud C. A longitudinal study on diarrhoea and vomiting in young dogs of four large breeds. Acta Vet Scand 2012; 54: 8
- 121 Marks SL, Kather EJ. Bacterial-associated diarrhea in the dog: a critical appraisal. Vet Clin North Am Small Anim Pract 2003; 33: 1029-1060
- 122 Cave NJ, Marks SL, Kass PH. et al. Evaluation of a routine diagnostic fecal panel for dogs with diarrhea. J Am Vet Med Assoc 2002; 221: 52-59
- 123 Anholt RM, Berezowski J, Robertson C. et al. Spatial-temporal clustering of companion animal enteric syndrome: detection and investigation through the use of electronic medical records from participating private practices. Epidemiol Infect 2015; 143: 2547-2558
- 124 Hall EJ, Day MJ. Diseases of the Small Intestine. In: Ettinger SJ, Feldman EC, Cote E. eds. Textbook of Veterinary Internal Medicine. 8th edn.. Amsterdam: Elsevier; 2017: 1516-1564
- 125 Goldstein MR, Kruth SA, Bersenas AM. et al. Detection and characterization of Clostridium perfringens in the feces of healthy and diarrheic dogs. Can J Vet Res 2012; 76: 161-165
- 126 Leipig-Rudolph M, Busch K, Prescott JF. et al. Intestinal lesions in dogs with acute hemorrhagic diarrhea syndrome associated with netF-positive Clostridium perfringens type A. J Vet Diagn Invest 2018; 30: 495-503
- 127 Diniz AN, Coura FM, Rupnik M. et al. The incidence of Clostridioides difficile and Clostridium perfringens netF-positive strains in diarrheic dogs. Anaerobe 2018; 49: 58-62
- 128 Ortiz V, Klein L, Channell S. et al. Evaluating the effect of metronidazole plus amoxicillin-clavulanate versus amoxicillin-clavulanate alone in canine haemorrhagic diarrhoea: a randomised controlled trial in primary care practice. J Small Anim Pract 2018; 59: 398-403
- 129 Unterer S, Strohmeyer K, Kruse BD. et al. Treatment of aseptic dogs with hemorrhagic gastroenteritis with amoxicillin/clavulanic acid: a prospective blinded study. J Vet Intern Med 2011; 25: 973-979
- 130 Moberg FS, Bjornvad CR, Lorentzen C. et al. Dogs with acute haemorrhagic diarrhoea syndrome not receiving antibiotics have a good prognosis despite initial high AHDS-score and systemic inflammation. In: Research Communications of the 29th ECVIM-CA Congress. J Vet Intern Med 34: 339-445
- 131 Robilotti E, Holubar M, Seo SK. et al. Feasibility and applicability of antimicrobial stewardship in immunocompromised patients. Curr Opin Infect Dis 2017; 30 (04) 346-353
- 132 Hathom JW. Critical appraisal of antimicrobials for prevention of infections in immunocompromised hosts. Hematol Oncol Clin North Am 1993; 7: 1051-1099
- 133 Berent A, Weisse C. Portosystemic shunts and portal venous hypoplasia. Stand Care Emerg Crit Care Med 2007; 9: 1-11
- 134 Tobias K, Besser T. Evaluation of leukocytosis, bacteremia, and portal vein partial oxygen tension in clinically normal dogs and dogs with portosystemic shunts. JAVMA 1997; 211: 715-718
- 135 Watson P, Herrtage M. Medical management of congenital portosystemic shunts in 27 dogs – a retrospective study. J Small Anim Pract 1998; 39: 62-68
- 136 Winkler JT, Bohling MW, Tillson DM. et al. Portosystemic shunts: diagnosis, prognosis, and treatment of 64 cases (1993–2001). J Am Anim Hosp Assoc 2003; 39: 169-185
- 137 Purvis D, Kirby R. Systemic inflammatory response syndrome: septic shock. Vet Clin North Am Small Anim Pract 1994; 24 (06) 1225-1247
- 138 Hauptman J, Walshaw R, Olivier N. Evaluation of the sensitivity and specificity of diagnostic criteria for sepsis in dogs. Vet Surg 1997; 26: 393-397
- 139 Okano S, Yoshida M, Fukushima U. et al. Usefulness of systemic inflammatory response syndrome criteria as an index for prognosis judgement. Vet Rec 2002; 150 (08) 245-246
- 140 Goddard A, Leisewitz AL. Canine parvovirus. Vet Clin North Am Small Anim Pract 2010; 40: 1041-1053
- 141 Castro TX, Cubel Garcia Rde C, Gonçalves LP. et al. Clinical, hematological, and biochemical findings in puppies with coronavirus and parvovirus enteritis. Can Vet J 2013; 54: 885-888
- 142 Sullivan LA. Parvoviral Enteritis: What’s New?. Adv Small Anim Med Surg 2019; 32: 1-3
- 143 Krentz T, Allen S. Bacterial translocation in critical illness. J Small Anim Pract 2017; 58: 191-198
- 144 Mylonakis ME, Kalli I, Rallis TS. Canine parvoviral enteritis: an update on the clinical diagnosis, treatment, and prevention. Vet Med (Auckl) 2016; 7: 91-100
- 145 Yilmaz Z, Senturk S. Characterisation of lipid profiles in dogs with parvoviral enteritis. J Small Anim Pract 2007; 48: 643-650
- 146 Iris K, Leontides LS, Mylonakis ME. et al. Factors affecting the occurrence, duration of hospitalization and final outcome in canine parvovirus infection. Res Vet Sci 2010; 89: 174-178
- 147 Alves F, Prata S, Nunes T. et al. Canine parvovirus: a predicting canine model for sepsis. BMC Vet Res 2020; 16: 199
- 148 Horecka K, Porter S, Amirian ES. et al. A Decade of Treatment of Canine Parvovirus in an Animal Shelter: A Retrospective Study. Animals (Basel) 2020; 10
- 149 Venn EC, Preisner K, Boscan PL. et al. Evaluation of an outpatient protocol in the treatment of canine parvoviral enteritis. J Vet Emerg Crit Care (San Antonio) 2017; 27: 52-65
- 150 Martin V, Najbar W, Gueguen S. et al. Treatment of canine parvoviral enteritis with interferon-omega in a placebo-controlled challenge trial. Vet Microbiol 2002; 89: 115-127
- 151 Andersen LA, Levy JK, McManus CM. et al. Prevalence of enteropathogens in cats with and without diarrhea in four different management models for unowned cats in the southeast United States. Vet J 2018; 236: 49-55
- 152 Marks SL, Rankin SC, Byrne BA. et al. Enteropathogenic bacteria in dogs and cats: diagnosis, epidemiology, treatment, and control. J Vet Intern Med 2011; 25: 1195-1208
- 153 Weese JS. Bacterial enteritis in dogs and cats: diagnosis, therapy, and zoonotic potential. Vet Clin North Am Small Anim Pract 2011; 41: 287-309
- 154 Kiflu B, Alemayehu H, Abdurahaman M. et al. Salmonella serotypes and their antimicrobial susceptibility in apparently healthy dogs in Addis Ababa, Ethiopia. BMC Vet Res 2017; 13: 134
- 155 Black DM, Rankin SC, King LG. Antimicrobial therapy and aerobic bacteriologic culture patterns in canine intensive care unit patients: 74 dogs (January–June 2006). J Vet Emerg Crit Care (San Antonio) 2009; 19: 489-495
- 156 Oeschger T, McCloskey D, Kopparthy V. et al. Point of care technologies for sepsis diagnosis and treatment. Lab Chip 2019; 19: 728-737
- 157 Stewart SD, Allen S. Antibiotic use in critical illness. J Vet Emerg Crit Care (San Antonio) 2019; 29: 227-238
- 158 Rhodes A, Evans LE, Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017; 43: 304-377
- 159 Bone R, Balk R, Cerra F. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101 (06) 1644-1655
- 160 Singer M, Deutschman CS, Seymour CW. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315: 801-810
- 161 Pipan M. Diarrhea. In: Drobatz KJ, Hopper K, Rozanski E. et al., eds. Textbook of Small Animal Emergency Medicine. 1st ed.. New Jersey: John Wiley & Sons; 2018: 485-489
- 162 Sanders ME. Probiotics: definition, sources, selection, and uses. Clin Infect Dis 2008; 46: S58-S61
- 163 Dobson A, Cotter PD, Ross RP. et al. Bacteriocin production: a probiotic trait?. Appl Environ Microbiol 2012; 78 (01) 1-6
- 164 Asahara T, Shimizu K, Nomoto K. et al. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157: H7. Infect Immunit 2004; 72: 2240-2247
- 165 Nagpal R, Wang S, Ahmadi S. et al. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep 2018; 8: 1-15
- 166 Quigley EMM. Prebiotics and Probiotics in Digestive Health. Clin Gastroenterol Hepatol 2019; 17: 333-344
- 167 Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017; 8: 172-184
- 168 Bybee SN, Scorza AV, Lappin MR. Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. J Vet Intern Med 2011; 25: 856-860
- 169 Fusi E, Rizzi R, Polli M. et al. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation on healthy cat performance. Vet Rec Open 2019; 6: e000368
- 170 Gagné JW, Wakshlag JJ, Simpson KW. et al. Effects of a synbiotic on fecal quality, short-chain fatty acid concentrations, and the microbiome of healthy sled dogs. BMC Vet Res 2013; 9: 246
- 171 Gómez-Gallego C, Junnila J, Männikkö S. et al. A canine-specific probiotic product in treating acute or intermittent diarrhea in dogs: A double-blind placebo-controlled efficacy study. Vet Microbiol 2016; 197: 122-128
- 172 Herstad HK, Nesheim BB, L’Abée-Lund T. et al. Effects of a probiotic intervention in acute canine gastroenteritis – a controlled clinical trial. J Small Anim Pract 2010; 51: 34-38
- 173 Marelli SP, Fusi E, Giardini A. et al. Effects of probiotic Lactobacillus acidophilus D2/CSL (CECT 4529) on the nutritional and health status of boxer dogs. Vet Rec. 2020
- 174 Marshall-Jones ZV, Baillon ML, Croft JM. et al. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. Am J Vet Res 2006; 67: 1005-1012
- 175 Nixon SL, Rose L, Muller AT. Efficacy of an orally administered anti-diarrheal probiotic paste (Pro-Kolin Advanced) in dogs with acute diarrhea: A randomized, placebo-controlled, double-blinded clinical study. J Vet Intern Med 2019; 33: 1286-1294
- 176 Rose L, Rose J, Gosling S. et al. Efficacy of a Probiotic-Prebiotic Supplement on Incidence of Diarrhea in a Dog Shelter: A Randomized, Double-Blind, Placebo-Controlled Trial. J Vet Intern Med 2017; 31: 377-382
- 177 Arslan H, Aksu DS, Terzi G. et al. Therapeutic effects of probiotic bacteria in parvoviral enteritis in dogs. Rev Med Vet Toulouse 2012; 2: 55-59
- 178 Niederwerder MC. Fecal microbiota transplantation as a tool to treat and reduce susceptibility to disease in animals. Vet Immunol Immunopathol 2018; 206: 65-72
- 179 Niina A, Kibe R, Suzuki R. et al. Improvement in Clinical Symptoms and Fecal Microbiome After Fecal Microbiota Transplantation in a Dog with Inflammatory Bowel Disease. Vet Med (Auckl) 2019; 10: 197-201
- 180 Pereira GQ, Gomes LA, Santos IS. et al. Fecal microbiota transplantation in puppies with canine parvovirus infection. J Vet Intern Med 2018; 32: 707-711
- 181 Weese J, Costa M, Webb J. Preliminary clinical and microbiome assessment of stool transplantation in the dog and cat. In: 2013 ACVIM Forum Research Abstracts Program. J Vet Intern Med 27: 604-756
- 182 Murphy T, Chaitman J, Han E. Use of fecal transplant in eight dogs with refractory clostridium perfringensassociated diarrhea. In: ACVIM Forum Research Abstracts Program. J Vet Intern Med 2014; 28: 976-1134 https://
- 183 Fenimore A, Martin L, Lappin MR. Evaluation of Metronidazole With and Without Enterococcus Faecium SF68 in Shelter Dogs With Diarrhea. Top Companion Anim Med 2017; 32: 100-103
- 184 Aktaş M, Borku M, Ozkanlar Y. Efficacy of Saccharomyces boulardii as a probiotic in dogs with lincomycin induced diarrhoea. Bulletin Veterinary Institute in Pulawy 2007; 51: 365-369
- 185 de Gunzburg J, Ghozlane A, Ducher A. et al. Protection of the Human Gut Microbiome From Antibiotics. J Infect Dis 2018; 217: 628-636
- 186 Friedman G. The role of probiotics in the prevention and treatment of antibiotic-associated diarrhea and Clostridium difficile colitis. Gastroenterol Clin North Am 2012; 41: 763-779
- 187 Goldenberg JZ, Lytvyn L, Steurich J. et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2015
- 188 Bulow C, Langdon A, Hink T. et al. Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential. mSphere 2018; 3 (06) e00588-18