RSS-Feed abonnieren
DOI: 10.1055/a-1393-7958
Der Chemokinrezeptor CXCR4 – seine Entwicklung und Bedeutung in der nuklearmedizinischen Theranostik
Development and significance of the chemokine receptor CXCR4 for theranostics in nuclear medicine
Zusammenfassung
Der Chemokinrezeptor CXCR4 – häufig nachgewiesen, doch selten greifbar. Während in einer schier endlosen Zahl an Studien seine physiologische und pathogene Präsenz, seine zellulären Funktionen sowie Möglichkeiten seiner gezielten pharmakologischen Kontrolle seit fast 30 Jahren erforscht werden, ist das Spektrum seiner nuklearmedizinischen klinischen Anwendungen mit malignen Krankheitsbildern des hämatopoetischen Systems und einigen wenigen Entzündungsprozessen immer noch überschaubar. Das Verständnis um Prozesse, die seine dynamische Zelloberflächenexpression regulieren sowie die Suche nach selektiven Radiopharmaka zur Unterscheidung physiologischer von pathogenen CXCR4-Expressionen stellen die Herausforderung der Zukunft dar, um den CXCR4 als ein vielseitiges theranostisches Target in der Nuklearmedizin zu manifestieren.
Abstract
The chemokine receptor CXCR4 – frequently verified, rarely captured. For almost 30 years now, numerous investigations have addressed its physiological and pathological expression, its cellular functions, as well as pharmacological possibilities of its regulation. Still, applications targeting the CXCR4 in the field of nuclear medicine are limited. Reliable clinical imaging and therapy is restricted to hematopoietic diseases and only a few numbers of inflammatory processes. To make it a versatile platform for nuclear medical applications, future challenges are the expansion of knowledge about dynamic processes regulating the CXCR4 cell surface expression next to the development of selective radiopharmaceuticals that can distinguish between physiological and pathological CXCR4-expressions.
Publikationsverlauf
Artikel online veröffentlicht:
10. Juni 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Marcuzzi E, Angioni R, Molon B. et al. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int J Mol Sci 2018; 20
- 2 Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540-550
- 3 Wu B, Chien EYT, Mol CD. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010; 330: 1066-1071
- 4 Oberlin E, Amara A, Bachelerie F. et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833-835
- 5 Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim Biophys Acta 2007; 1768: 952-963
- 6 Wester HJ, Keller U, Schottelius M. et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics 2015; 5: 618-630
- 7 Debnath B, Xu S, Grande F. et al. Small molecule inhibitors of CXCR4. Theranostics 2013; 3: 47-75
- 8 Pawig L, Klasen C, Weber C. et al. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6: 429
- 9 Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010; 16: 2927-2931
- 10 Harder J, Bartels J, Christophers E. et al. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276: 5707-5713
- 11 Feng Y, Broder CC, Kennedy PE. et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872-877
- 12 Qin L, Kufareva I, Holden LG. et al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine§. Science 2015; 347: 1117-1122
- 13 Kircher M, Herhaus P, Schottelius M. et al. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 2018; 32: 503-511
- 14 Guo F, Wang Y, Liu J. et al. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016; 35: 816-826
- 15 Domanska UM, Kruizinga RC, Nagengast WB. et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 2013; 49: 219-230
- 16 Furusato B, Mohamed A, Uhlén M. et al. CXCR4 and cancer. Pathol Int 2010; 60: 497-505
- 17 Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761-1767
- 18 Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004; 14: 171-179
- 19 Arya M, Patel HRH, McGurk C. et al. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 2004; 4: 291-303
- 20 Darash-Yahana M, Pikarsky E, Abramovitch R. et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 2004; 18: 1240-1242
- 21 Su L, Zhang J, Xu H. et al. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res 2005; 11: 8273-8280
- 22 Phillips RJ, Burdick MD, Lutz M. et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 2003; 167: 1676-1686
- 23 Speetjens FM, Liefers GJ, Korbee CJ. et al. Nuclear localization of CXCR4 determines prognosis for colorectal cancer patients. Cancer Microenviron 2009; 2: 1-7
- 24 Terasaki M, Sugita Y, Arakawa F. et al. CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathol 2011; 28: 89-97
- 25 Burger JA, Burger M, Kipps TJ. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 1999; 94: 3658-3667
- 26 Fang H-Y, Münch NS, Schottelius M. et al. CXCR4 Is a Potential Target for Diagnostic PET/CT Imaging in Barrett's Dysplasia and Esophageal Adenocarcinoma. Clin Cancer Res 2018; 24: 1048-1061
- 27 Bonham LW, Karch CM, Fan CC. et al. CXCR4 involvement in neurodegenerative diseases. Transl Psychiatry 2018; 8: 73
- 28 Schober A, Bernhagen J, Weber C. Chemokine-like functions of MIF in atherosclerosis. J Mol Med (Berl) 2008; 86: 761-770
- 29 Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 2009; 27: 165-197
- 30 Nagafuchi Y, Shoda H, Sumitomo S. et al. Immunophenotyping of rheumatoid arthritis reveals a linkage between HLA-DRB1 genotype, CXCR4 expression on memory CD4(+) T cells, and disease activity. Sci Rep 2016; 6: 29338
- 31 Buckley CD, Amft N, Bradfield PF. et al. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol 2000; 165: 3423-3429
- 32 Chong BF, Mohan C. Targeting the CXCR4/CXCL12 axis in systemic lupus erythematosus. Expert Opin Ther Targets 2009; 13: 1147-1153
- 33 Loetscher M, Geiser T, O'Reilly T. et al. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 1994; 269: 232-237
- 34 Simmons G, Wilkinson D, Reeves JD. et al. Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol 1996; 70: 8355-8360
- 35 Luker GD, Yang J, Richmond A. et al. At the bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2020;
- 36 Kuil J, Buckle T, van Leeuwen FWB. Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev 2012; 41: 5239-5261
- 37 Walenkamp AME, Lapa C, Herrmann K. et al. CXCR4 Ligands: The Next Big Hit?. J Nucl Med 2017; 58: 77S-82S
- 38 George GPC, Pisaneschi F, Nguyen Q-D. et al. Positron emission tomographic imaging of CXCR4 in cancer: challenges and promises. Mol Imaging 2014; 13
- 39 Demmer O, Gourni E, Schumacher U. et al. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem 2011; 6: 1789-1791
- 40 Demmer O, Dijkgraaf I, Schumacher U. et al. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J Med Chem 2011; 54: 7648-7662
- 41 Demmer O, Dijkgraaf I, Schottelius M. et al. Introduction of functional groups into peptides via N-alkylation. Org Lett 2008; 10: 2015-2018
- 42 Gaulton A, Bellis LJ, Bento AP. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40: D1100-D1107
- 43 Wang J, Youkharibache P, Zhang D. et al. iCn3D, a web-based 3D viewer for sharing 1D/2D/3D representations of biomolecular structures. Bioinformatics 2020; 36: 131-135
- 44 Thoma G, Streiff MB, Kovarik J. et al. Orally bioavailable isothioureas block function of the chemokine receptor CXCR4 in vitro and in vivo. J Med Chem 2008; 51: 7915-7920
- 45 Zhu S, Meng Q, Schooley RT. et al. Structural and Biological Characterizations of Novel High-Affinity Fluorescent Probes with Overlapped and Distinctive Binding Regions on CXCR4. Molecules 2019; 24
- 46 Beletkaia E, Fenz SF, Pomp W. et al. CXCR4 signaling is controlled by immobilization at the plasma membrane. Biochim Biophys Acta 2016; 1863: 607-616
- 47 Ávila-Sánchez M, Ferro-Flores G, Jiménez-Mancilla N. et al. Synthesis and preclinical evaluation of the 99mTc-/177Lu-CXCR4-L theranostic pair for in vivo chemokine-4 receptor-specific targeting. J Radioanal Nucl Chem 2020; 324: 21-32
- 48 Werner TA, Forster CM, Dizdar L. et al. CXCR4/CXCR7/CXCL12-Axis in Follicular Thyroid Carcinoma. J Cancer 2018; 9: 929-940
- 49 Rosenberg EM, Harrison RES, Tsou LK. et al. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chem Biol 2019; 26: 662-673.e7
- 50 Domanska UM, Timmer-Bosscha H, Nagengast WB. et al. CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia 2012; 14: 709-718
- 51 Nakamura T, Furunaka H, Miyata T. et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 1988; 263: 16709-16713
- 52 Miyata T, Tokunaga F, Yoneya T. et al. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem 1989; 106: 663-668
- 53 Oishi S, Fujii N. Peptide and peptidomimetic ligands for CXC chemokine receptor 4 (CXCR4). Org Biomol Chem 2012; 10: 5720-5731
- 54 Donzella GA, Schols D, Lin SW. et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4: 72-77
- 55 de Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov 2003; 2: 581-587
- 56 Bridger GJ, Skerlj RT, Hernandez-Abad PE. et al. Synthesis and structure-activity relationships of azamacrocyclic C-X-C chemokine receptor 4 antagonists: analogues containing a single azamacrocyclic ring are potent inhibitors of T-cell tropic (X4) HIV-1 replication. J Med Chem 2010; 53: 1250-1260
- 57 Zhu A, Zhan W, Liang Z. et al. Dipyrimidine amines: a novel class of chemokine receptor type 4 antagonists with high specificity. J Med Chem 2010; 53: 8556-8568
- 58 Festuccia C, Mancini A, Gravina GL. et al. Dual CXCR4 and E-Selectin Inhibitor, GMI-1359, Shows Anti-Bone Metastatic Effects and Synergizes with Docetaxel in Prostate Cancer Cell Intraosseous Growth. Cells 2019; 9
- 59 Magnani JL, Fogler WE. Methods of mobilizing marrow infiltrating lymphocytes and uses thereof. WO2019108750A1
- 60 Huang Y, Huang Z, An J. et al. A novel dimeric CXCR4 antagonist synergizes with chemotherapy in acute myeloid leukaemia by mobilizing leukaemic cells from their associated bone marrow niches. Br J Haematol 2019; 187: e11-e15
- 61 Nimmagadda S, Pullambhatla M, Stone K. et al. Molecular imaging of CXCR4 receptor expression in human cancer xenografts with 64CuAMD3100 positron emission tomography. Cancer Res 2010; 70: 3935-3944
- 62 Weiss ID, Jacobson O, Kiesewetter DO. et al. Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol Imaging Biol 2012; 14: 106-114
- 63 Hartimath SV, Draghiciu O, Daemen T. et al. Therapy-Induced Changes in CXCR4 Expression in Tumor Xenografts Can Be Monitored Noninvasively with N-11CMethyl-AMD3465 PET. Mol Imaging Biol 2020; 22: 883-890
- 64 Poty S, Gourni E, Désogère P. et al. AMD3100: A Versatile Platform for CXCR4 Targeting (68)Ga-Based Radiopharmaceuticals. Bioconjug Chem 2016; 27: 752-761
- 65 Wang Z, Zhang M, Wang L. et al. Prospective Study of (68)Ga-NOTA-NFB: Radiation Dosimetry in Healthy Volunteers and First Application in Glioma Patients. Theranostics 2015; 5: 882-889
- 66 Poschenrieder A, Schottelius M, Schwaiger M. et al. The influence of different metal-chelate conjugates of pentixafor on the CXCR4 affinity. EJNMMI Res 2016; 6: 36
- 67 Schottelius M, Ludescher M, Richter F. et al. Validation of 125ICPCR4.3 as an investigative tool for the sensitive and specific detection of hCXCR4 and mCXCR4 expression in vitro and in vivo. EJNMMI Res 2019; 9: 75
- 68 Lapa C, Lückerath K, Kircher S. et al. Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. Br J Haematol 2019; 184: 440-443
- 69 Vag T, Gerngross C, Herhaus P. et al. First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers. J Nucl Med 2016; 57: 741-746
- 70 Werner RA, Kircher S, Higuchi T. et al. CXCR4-Directed Imaging in Solid Tumors. Front Oncol 2019; 9: 770
- 71 Schwarzenböck SM, Stenzel J, Otto T. et al. 68Gapentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model - comparison with 18FFDG PET/CT, MRI and ex vivo receptor expression. Oncotarget 2017; 8: 95606-95619
- 72 Mayerhoefer ME, Raderer M, Lamm W. et al. CXCR4 PET imaging of mantle cell lymphoma using 68GaPentixafor: comparison with 18FFDG-PET. Theranostics 2021; 11: 567-578
- 73 Lawal IO, Popoola GO, Mahapane J. et al. 68GaGa-Pentixafor for PET Imaging of Vascular Expression of CXCR-4 as a Marker of Arterial Inflammation in HIV-Infected Patients: A Comparison with 18FFDG PET Imaging. Biomolecules 2020; 10
- 74 Kircher M, Tran-Gia J, Kemmer L. et al. Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: Correlation with 18F-FDG PET/CT. J Nucl Med 2020; 61: 751-756
- 75 Herhaus P, Lipkova J, Lammer F. et al. CXCR4-Targeted PET Imaging of Central Nervous System B-Cell Lymphoma. J Nucl Med 2020; 61: 1765-1771
- 76 Derlin T, Jaeger B, Jonigk D. et al. Clinical Molecular Imaging of Pulmonary CXCR4 Expression to Predict Outcome of Pirfenidone Treatment in Idiopathic Pulmonary Fibrosis. Chest 2020;
- 77 Rieckmann M, Delgobo M, Gaal C. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest 2019; 129: 4922-4936
- 78 Breun M, Monoranu CM, Kessler AF. et al. 68Ga-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Front Oncol 2019; 9: 503
- 79 Li X, Yu W, Wollenweber T. et al. 68GaPentixafor PET/MR imaging of chemokine receptor 4 expression in the human carotid artery. Eur J Nucl Med Mol Imaging 2019; 46: 1616-1625
- 80 Haug AR, Leisser A, Wadsak W. et al. Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using 68GaGa-Pentixafor-PET/MRI. Theranostics 2019; 9: 3653-3658
- 81 Bouter Y, Meller B, Sahlmann CO. et al. Immunohistochemical detection of chemokine receptor 4 expression in chronic osteomyelitis confirms specific uptake in 68Ga-Pentixafor-PET/CT. Nuklearmedizin 2018; 57: 198-203
- 82 Reiter T, Kircher M, Schirbel A. et al. Imaging of C-X-C Motif Chemokine Receptor CXCR4 Expression After Myocardial Infarction With 68GaPentixafor-PET/CT in Correlation With Cardiac MRI. JACC Cardiovasc Imaging 2018; 11: 1541-1543
- 83 Derlin T, Sedding DG, Dutzmann J. et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected 68Gapentixafor PET/CT. Eur J Nucl Med Mol Imaging 2018; 45: 1934-1944
- 84 Mayerhoefer ME, Jaeger U, Staber P. et al. 68GaGa-Pentixafor PET/MRI for CXCR4 Imaging of Chronic Lymphocytic Leukemia: Preliminary Results. Invest Radiol 2018; 53: 403-408
- 85 Vag T, Steiger K, Rossmann A. et al. PET imaging of chemokine receptor CXCR4 in patients with primary and recurrent breast carcinoma. EJNMMI Res 2018; 8: 90
- 86 Li X, Kemmer L, Zhang X. et al. Anti-Inflammatory Effects on Atherosclerotic Lesions Induced by CXCR4-Directed Endoradiotherapy. J Am Coll Cardiol 2018; 72: 122-123
- 87 Heinze B, Fuss CT, Mulatero P. et al. Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma. Hypertension 2018; 71: 317-325
- 88 Weiberg D, Thackeray JT, Daum G. et al. Clinical Molecular Imaging of Chemokine Receptor CXCR4 Expression in Atherosclerotic Plaque Using 68Ga-Pentixafor PET: Correlation with Cardiovascular Risk Factors and Calcified Plaque Burden. J Nucl Med 2018; 59: 266-272
- 89 Werner RA, Weich A, Higuchi T. et al. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach. Theranostics 2017; 7: 1489-1498
- 90 Bluemel C, Hahner S, Heinze B. et al. Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clin Nucl Med 2017; 42: e29-e34
- 91 Derlin T, Gueler F, Bräsen JH. et al. Integrating MRI and Chemokine Receptor CXCR4-Targeted PET for Detection of Leukocyte Infiltration in Complicated Urinary Tract Infections After Kidney Transplantation. J Nucl Med 2017; 58: 1831-1837
- 92 Derlin T, Wester H-J, Bengel FM. et al. Visualization of Posttraumatic Splenosis on Chemokine Receptor CXCR4-Targeted PET/CT. Clin Nucl Med 2017; 42: e317-e318
- 93 Herhaus P, Habringer S, Vag T. et al. Response assessment with the CXCR4-directed positron emission tomography tracer 68GaPentixafor in a patient with extranodal marginal zone lymphoma of the orbital cavities. EJNMMI Res 2017; 7: 51
- 94 Lapa C, Kircher S, Schirbel A. et al. Targeting CXCR4 with 68GaPentixafor: a suitable theranostic approach in pleural mesothelioma?. Oncotarget 2017; 8: 96732-96737
- 95 Herhaus P, Habringer S, Philipp-Abbrederis K. et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica 2016; 101: 932-940
- 96 Lapa C, Lückerath K, Rudelius M. et al. 68GaPentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer--initial experience. Oncotarget 2016; 7: 9288-9295
- 97 Philipp-Abbrederis K, Herrmann K, Knop S. et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med 2015; 7: 477-487
- 98 Lapa C, Lückerath K, Kleinlein I. et al. (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics 2016; 6: 428-434
- 99 Hess A, Derlin T, Koenig T. et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur Heart J 2020; 41: 3564-3575
- 100 Zhang H, Maeda M, Shindo M. et al. Imaging CXCR4 Expression with Iodinated and Brominated Cyclam Derivatives. Mol Imaging Biol 2020; 22: 1184-1196
- 101 Vallejo-Armenta P, Santos-Cuevas C, Soto-Andonaegui J. et al. 99mTc-CXCR4-L for Imaging of the Chemokine-4 Receptor Associated with Brain Tumor Invasiveness: Biokinetics, Radiation Dosimetry, and Proof of Concept in Humans. Contrast Media Mol Imaging 2020; 2020: 2525037
- 102 Lau J, Kwon D, Rousseau E. et al. 68GaGa/177LuLu-BL01, a Novel Theranostic Pair for Targeting C-X-C Chemokine Receptor 4. Mol Pharm 2019; 16: 4688-4695
- 103 Poschenrieder A, Osl T, Schottelius M. et al. First 18F-Labeled Pentixafor-Based Imaging Agent for PET Imaging of CXCR4 Expression In Vivo. Tomography 2016; 2: 85-93
- 104 Yan X, Niu G, Wang Z. et al. Al18FNOTA-T140 Peptide for Noninvasive Visualization of CXCR4 Expression. Mol Imaging Biol 2016; 18: 135-142
- 105 Nayak TR, Hong H, Zhang Y. et al. Multimodality imaging of CXCR4 in cancer: current status towards clinical translation. Curr Mol Med 2013; 13: 1538-1548
- 106 Jacobson O, Weiss ID, Szajek LP. et al. Improvement of CXCR4 tracer specificity for PET imaging. J Control Release 2012; 157: 216-223
- 107 Lapa C, Hänscheid H, Kircher M. et al. Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. J Nucl Med 2019; 60: 60-64
- 108 Maurer S, Herhaus P, Lippenmeyer R. et al. Side Effects of CXC-Chemokine Receptor 4-Directed Endoradiotherapy with Pentixather Before Hematopoietic Stem Cell Transplantation. J Nucl Med 2019; 60: 1399-1405
- 109 Habringer S, Lapa C, Herhaus P. et al. Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics 2018; 8: 369-383
- 110 Schottelius M, Osl T, Poschenrieder A. et al. 177Lupentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics 2017; 7: 2350-2362
- 111 Lapa C, Herrmann K, Schirbel A. et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics 2017; 7: 1589-1597
- 112 Herrmann K, Schottelius M, Lapa C. et al. First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. J Nucl Med 2016; 57: 248-251
- 113 Sgouros G, Bodei L, McDevitt MR. et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 2020; 19: 589-608
- 114 Dawicki W, Allen KJH, Jiao R. et al. Daratumumab-225Actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors. Oncoimmunology 2019; 8: 1607673