Synthesis 2021; 53(13): 2183-2191
DOI: 10.1055/a-1385-9398
short review

Synthetic Applications and Computational Perspectives on Eosin Y Induced Direct HAT Process

Joan Inoa
,
Grecia Dominici
,
Reem Eldabagh
,
Jonathan J. Foley IV
,
Yalan Xing
Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (PRF#58838-UNI1 and PRF#58853-UNI6) for support of this research. J.J.F. acknowledges the ART program at WPU for partial support of this work.


Abstract

In recent years, advancements in photocatalysis have allowed for a plethora of chemical transformations under milder conditions. Many of these photochemical reactions utilize hydrogen atom transfer processes to obtain desired products. Hydrogen atom transfer processes can follow one of two unique pathways: the first, a direct path and the second, an indirect path. In this paper, we highlight the ability of eosin Y to act as a direct hydrogen atom transfer catalyst from both synthetic and computational chemistry perspectives.



Publication History

Received: 01 December 2020

Accepted after revision: 08 February 2021

Accepted Manuscript online:
08 February 2021

Article published online:
10 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 1b Schultz DM, Yoon TP. Science 2014; 343: 985
    • 1c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1e Bian C, Singh AK, Niu L, Yi H, Lei A. Asian J. Org. Chem. 2017; 6: 386
    • 1f Shaw MH, Twilton J, Macmillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 2c Bian C, Singh AK, Niu L, Yi H, Lei A. Asian J. Org. Chem. 2017; 6: 386
    • 2d Stephenson CR. J, Yoon TP, MacMillan DW. C. Visible Light Photocatalysis in Organic Chemistry . Wiley; Weinheim: 2018
  • 3 Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
  • 4 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 5a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 5b Wei G, Basheer C, Tan C.-H, Jiang Z. Tetrahedron Lett. 2016; 57: 3801
  • 6 Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
  • 7 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2016
    • 8a Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 8b Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
  • 9 Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
  • 10 Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
  • 12 Fan X, Rong J, Wu H, Zhou Q, Deng H, Tan J, Xue C, Wu L, Tao H, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
  • 14 Srivastava V, Singh P. RSC Adv. 2017; 7: 31377
  • 15 Yan D, Chen J, Xiao W. Angew. Chem. Int. Ed. 2019; 58: 378
  • 16 Kuang Y, Wang K, Shi X, Huang X, Meggers E, Wu J. Angew. Chem. Int. Ed. 2019; 58: 16859
  • 17 DeMartino MP, Chen K, Baran PS. J. Am. Chem. Soc. 2008; 130: 11546
  • 18 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 19 Yan J, Cheo HW, Teo W, Shi X, Idres S, Deng L, Wu J. J. Am. Chem. Soc. 2020; 142: 11357
    • 20a Combs AP, Zhu W, Crawley ML, Glass B, Polam P, Sparks RB, Modi D, Takvorian A, McLaughlin E, Yue EW, Wasserman Z, Bower M, Wei M, Rupar M, Ala PJ, Reid BM, Ellis D, Gonneville L, Emm T, Taylor N, Yeleswaram S, Li Y, Wynn R, Burn TC, Hollis G, Liu PC. C. J. Med. Chem. 2006; 49: 3774
    • 20b Maccari R, Ottanà R. J. Med. Chem. 2012; 55: 2
  • 21 Fan X, Xiao P, Jiao Z, Yang T, Dai X, Xu W, Tan J, Cui G, Su H, Fang W, Wu J. Angew. Chem. Int. Ed. 2019; 58: 12580
  • 22 Lalonde M, Chan TH. Synthesis 1985; 817
    • 23a Savela R, Zawartka W, Leino R. Organometallics 2012; 31: 3199
    • 23b Pongkittiphan V, Theodorakis EA, Chavasiri W. Tetrahedron Lett. 2009; 50: 5080
    • 23c Kusukawa T, Kabe Y, Nestler B, Ando W. Organometallics 1995; 14: 2556
    • 23d Sommer LH, Frye CL, Parker GA, Michael KW. J. Am. Chem. Soc. 1964; 86: 3271
    • 23e Curtice J, Gilman H, Hammond GS. J. Am. Chem. Soc. 1957; 79: 4754
  • 24 Inoa J, Patel M, Dominici G, Eldabagh R, Patel A, Lee J, Xing Y. J. Org. Chem. 2020; 85: 6181
  • 26 Srivastava V, Singh PK, Singh PP. Tetrahedron Lett. 2019; 60: 1333
    • 27a Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
    • 27b Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Chem. Rev. 2016; 116: 14181
    • 27c Dutcher B, Fan M, Russell AG. ACS Appl. Mater. Interfaces 2015; 7: 2137
  • 28 Ansari MA, Yadav D, Soni S, Srivastava A, Singh MS. J. Org. Chem. 2019; 84: 5404
    • 29a Jagodziński TS. Chem. Rev. 2003; 103: 197
    • 29b Ransborg LK, Albrecht Ł, Weise CF, Bak JR, Jørgensen KA. Org. Lett. 2012; 14: 724
    • 29c Samai S, Chanda T, Ila H, Singh MS. Eur. J. Org. Chem. 2013; 4026
    • 29d Wen L.-R, Men L.-B, He T, Ji G.-J, Li M. Chem. Eur. J. 2014; 20: 5028
    • 29e Luo X, Ge L.-S, An X.-L, Jin J.-H, Wang Y, Sun P.-P, Deng W.-P. J. Org. Chem. 2015; 80: 4611
    • 29f Li M, Kong X.-J, Wen L.-R. J. Org. Chem. 2015; 80: 11999
    • 29g Li C.-X, Liu R.-J, Yin K, Wen L.-R, Li M. Org. Biomol. Chem. 2017; 15: 5820
    • 29h Man N.-N, Wang J.-Q, Zhang L.-M, Wen L.-R, Li M. J. Org. Chem. 2017; 82: 5566
  • 30 Chen M, Di J, Li J, Mo L, Zhang Z. Tetrahedron 2020; 76: 131059
    • 32a Garavelli M. Theor. Chem. Acc. 2006; 116: 87
    • 32b Schreiner PR. In The Investigation of Organic Reactions and their Mechanisms, Chap. 7 . Maskill H. Blackwell Publishing Ltd; Oxford: 2006
  • 33 Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005; 105: 2999
  • 34 Hohenstein EG, Chill ST, Sherrill CD. J. Chem. Theory Comput. 2008; 4: 1996
    • 35a Tully JC. J. Chem. Phys. 1990; 93: 1061
    • 35b Subotnik JE, Jain A, Landry B, Petit A, Outang W, Bellonzi N. Annu. Rev. Phys. Chem. 2016; 67: 387
    • 35c Martinez TJ, Ben-Nun M, Levine RD. J. Phys. Chem. 1996; 100: 7884
    • 35d Curchod BF. E, Martínez TJ. Chem. Rev. 2018; 118: 3305
  • 36 Hohestein EG. J. Am. Chem. Soc. 2016; 138: 1868
  • 37 Slavíček P, Martínez TJ. J. Chem. Phys. 2010; 132: 234102
  • 38 Jorgensen WL, Chandrasekhar J, Madura J. J. Chem. Phys. 1983; 79: 926