RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2021; 32(08): 833-837
DOI: 10.1055/a-1377-7369
DOI: 10.1055/a-1377-7369
letter
Mild Copper-Catalyzed Addition of Arylboronic Esters to Di-tert-butyl Dicarbonate: An Easy Access to Methyl Arylcarboxylates
Financial support from Key Scientific and Technological Project of Henan Province (182102210184), and the Postdoctoral Science Foundation of Henan Scientific Committee is acknowledged.
Abstract
An efficient copper-catalyzed addition of arylboronic esters to (Boc)2O was developed. The reaction can be conducted under exceedingly mild conditions and is compatible with a variety of synthetically relevant functional groups. It therefore represents a useful alternative route for the synthesis of methyl arylcarboxylates. A preliminary mechanistic study indicated the involvement of an addition–elimination mechanism.
Key words
copper catalysis - arylboronic esters - addition - carboxylation - methyl arylcarboxylatesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1377-7369.
- Supporting Information
Publikationsverlauf
Eingereicht: 29. Dezember 2020
Angenommen nach Revision: 29. Januar 2021
Accepted Manuscript online:
29. Januar 2021
Artikel online veröffentlicht:
17. Februar 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 1b Breit B, Schmidt Y. Chem. Rev. 2008; 108: 2928
- 1c Yoshikai N, Nakamura E. Chem. Rev. 2012; 112: 2339
- 2a Burns DH, Miller JD, Chan H.-K, Delaney MO. J. Am. Chem. Soc. 1997; 119: 2125
- 2b Bertz SH, Eriksson M, Miao G, Snyder JP. J. Am. Chem. Soc. 1996; 118: 10906
- 2c Genna DT, Posner GH. Org. Lett. 2011; 13: 5358
- 2d Lipshutz BH, Kozlowski JA, Wilhelm RS. J. Org. Chem. 1983; 48: 546
- 2e Pan J.-L, Chen T, Zhang Z.-Q, Li Y.-F, Zhang X.-M, Zhang F.-M. Chem. Commun. 2016; 52: 2382
- 3a Johnson DA, Jennings MP. Org. Lett. 2018; 20: 6099
- 3b Guo Y, Harutyunyan SR. Angew. Chem. Int. Ed. 2019; 58: 12950
- 3c Cahiez G, Gager O, Buendia J. Angew. Chem. Int. Ed. 2010; 49: 1278
- 3d Xiao B, Gong T.-J, Liu Z.-J, Liu J.-H, Luo D.-F, Xu J, Liu L. J. Am. Chem. Soc. 2011; 133: 9250
- 3e Liu J.-H, Yang C.-T, Lu X.-Y, Zhang Z.-Q, Xu L, Cui M, Lu X, Xiao B, Fu Y, Liu L. Chem. Eur. J. 2014; 20: 15334
- 3f Ren P, Stern L.-A, Hu X. Angew. Chem. Int. Ed. 2012; 51: 9110
- 4a Hall DG. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005. 1
- 4b Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
- 5a Akgun B, Hall DG. Angew. Chem. Int. Ed. 2018; 57: 13028
- 5b Lennox AJ. J, Lloyd-Jones GC. Angew. Chem. Int. Ed. 2013; 52: 7362
- 5c Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 5d Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 6a Thathagar MB, Beckers J, Rothenberg G. J. Am. Chem. Soc. 2002; 124: 11858
- 6b Bergmann AM, Oldham AM, You W, Brown MK. Chem. Commun. 2018; 54: 5381
- 6c Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
- 6d Gurung SK, Thapa S, Shrestha B, Giri R. Org. Chem. Front. 2015; 2: 649
- 6e Gurung SK, Thapa S, Kafle A, Dickie DA, Giri R. Org. Lett. 2014; 16: 1264
- 6f Tailor SB, Manzotti M, Asghar S, Rowsell BJ. S, Luckham SL. J, Sparkes HA, Bedford RB. Organometallics 2019; 38: 1770
- 6g Budiman YP, Friedrich A, Radius U, Marder TB. ChemCatChem 2019; 11: 5387
- 6h Mao J, Guo J, Fang F, Ji S.-J. Tetrahedron 2008; 64: 3905
- 6i Li J.-H, Li J.-L, Xie Y.-X. Synthesis 2007; 984
- 7a Yang C.-T, Zhang Z.-Q, Liu Y.-C, Liu L. Angew. Chem. Int. Ed. 2011; 50: 3904
- 7b Shintani R, Takatsu K, Takeda M, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 8656
- 7c Sun Y.-Y, Yi J, Lu X, Zhang Z.-Q, Xiao B, Fu Y. Chem. Commun. 2014; 50: 11060
- 7d Zhu Z, Liu J, Dong S, Chen B, Wang Z, Tang R, Li Z. Asian J. Org. Chem. 2020; 9: 631
- 7e Jiang S, Dong X.-Y, Gu Q.-S, Ye L, Li Z.-L, Liu X.-Y. J. Am. Chem. Soc. 2020; 142: 19652
- 7f Takeda M, Takatsu K, Shintani R, Hayashi T. J. Org. Chem. 2014; 79: 2354
- 8a Yu C.-M, Kweon J.-H, Ho P.-S, Kang S.-C, Lee GY. Synlett 2005; 2631
- 8b Wang S, Wang M, Wang L, Wang B, Li P, Wang J. Tetrahedron 2011; 67: 4800
- 8c Babu SA, Saranya S, Rohit KR, Anilkumar J. ChemistrySelect 2019; 4: 1019
- 9a Takatsu K, Shintani R, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 5548
- 9b Wu C, Yue G, Nielsen CD.-T, Xu K, Hirao H, Zhou J. J. Am. Chem. Soc. 2016; 138: 742
- 10a Lu X.-Y, Yang C.-T, Liu J.-H, Zhang Z.-Q, Lu X, Lou X, Xiao B, Fu Y. Chem. Commun. 2015; 51: 2388
- 10b Lu X.-Y, Li J.-S, Wang J.-Y, Wang S.-Q, Li Y.-M, Zhu Y.-J, Zhou R, Ma W.-J. RSC Adv. 2018; 8: 41561
- 11a Shintani R, Takatsu K, Hayashi T. Chem. Commun. 2010; 46: 6822
- 11b Ni C, Gao J, Fang X. Chem. Commun. 2020; 56: 2654
- 11c Liao Y.-Y, Hu Q.-S. J. Org. Chem. 2011; 76: 7602
- 11d Zheng H, Zhang Q, Chen J, Liu M, Cheng S, Ding J, Wu H, Su W. J. Org. Chem. 2009; 74: 943
- 11e Tomita D, Yamatsugu K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 6946
- 12a Ohishi T, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2008; 47: 5792
- 12b Riss PJ, Lu S, Telu S, Aigbirhio FI, Pike VW. Angew. Chem. Int. Ed. 2012; 51: 2698
- 12c Takaya J, Tadami S, Ukai K, Iwasawa N. Org. Lett. 2008; 10: 2697
- 12d Ohmiya H, Tanabe M, Sawamura M. Org. Lett. 2011; 13: 1086
- 12e Wang W, Zhang G, Lang R, Xia C, Li F. Green Chem. 2013; 15: 635
- 12f Nayal OS, Hong J, Yang Y, Mo F. Org. Chem. Front. 2019; 6: 3673
- 12g Duong HA, Nguyen TM, Rosman NZ. B, Tan LJ. L. Synthesis 2014; 46: 1881
- 12h Zheng R, Zhou Q, Gu H, Jiang H, Wu J, Jin Z, Han D, Dai G, Chen R. Tetrahedron Lett. 2014; 55: 5671
- 13 Saito Y, Ouchi H, Takahata H. Tetrahedron 2006; 62: 11599
- 14a Sämann C, Haag B, Knochel P. Chem. Eur. J. 2012; 18: 16145
- 14b Degennaro L, Maggiulli D, Carlucci C, Fanelli F, Romanazzi G, Luisi R. Chem. Commun. 2016; 52: 9554
- 14c Huck L, de la Hoz A, Díaz-Ortiz A, Alcazar J. Org. Lett. 2017; 19: 3747
- 14d Kogami M, Watanabe N. Synth. Commun. 2013; 43: 681
-
15
Methyl (Het)arylcarboxylates 3a–y, 5a–e; General Procedure
A 15 mL Schlenk tube equipped with a stirrer bar was charged with CuCl (10 mol%), L7 (13 mol%), LiOMe (2.5 equiv), and the appropriate boronic ester 1 or 4 (0.375 mmol). The vessel was then evacuated and filled with Ar (three cycles). DMA (0.5 mL) and (Boc)2O (0.25 mmol) were added sequentially under Ar, and the mixture was stirred at 30 ℃ for 6 h. MeI (5 equiv) was then added in air, and the mixture was stirred at 30 ℃ for additional 2 h. The mixture was finally diluted with EtOAc and washed with sat. aq NaCl (20 mL). The aqueous phase was further extracted with EtOAc (3 × 20 mL), and the combined organic phases were dried (Na2SO4) and concentrated. The residue was purified by column chromatography [silica gel EtOAc–hexane (1:100 to 1:50)].
Methyl 2-Naphthoate (3b)
Prepared by following the general procedure as a white solid; yield: 91% (by HPLC). 1H NMR (400 MHz, CDCl3): δ = 8.62 (s, 1 H), 8.08–8.05 (m, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.88 (d, J = 8.7 Hz, 2 H), 7.63–7.49 (m, 2 H), 3.98 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 167.29, 135.53, 132.51, 131.09, 129.37, 128.25, 128.17, 127.78, 127.41, 126.66, 125.24, 52.26. The NMR spectral data agreed with the reported values.16
- 16 Tobisu M, Yamakawa K, Shimasaki T, Chatani N. Chem. Commun. 2011; 47: 2946
For selected examples, see:
For selected examples of couplings with aryl halides or pseudohalides, see:
Selected examples on coupling with alkyl halides or pseudohalides:
For selected examples of couplings with alkynyl halides or pseudohalides, see: