Planta Med 2022; 88(06): 440-446
DOI: 10.1055/a-1345-9471
Natural Product Chemistry and Analytical Studies
Original Papers

Pinellic Acid Isolated from Quercetin-rich Onions has a Peroxisome Proliferator-Activated Receptor-Alpha/Gamma (PPAR-α/γ) Transactivation Activity

Mikio Doi
1   Graduate School of Agriculture, Hokkaido University, Japan
,
Naoki Morita
2   Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan
2   Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan
,
Tsugumi Okuzawa
2   Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan
,
Satoru Ohgiya
3   National Institute of Advanced Industrial Science and Technology, AIST Hokkaido, Hokkaido, Japan
,
Daisaku Okamoto
4   Plant Breeding Institute, Hokkaido, Japan
,
Kenichi Sato
5   Northern Advancement Center for Science and Technology, Hokkaido, Japan
,
Yukiya Ito
5   Northern Advancement Center for Science and Technology, Hokkaido, Japan
,
Hideyuki Matsuura
1   Graduate School of Agriculture, Hokkaido University, Japan
,
Yasuyuki Hashidoko
1   Graduate School of Agriculture, Hokkaido University, Japan
› Author Affiliations
Supported by: Kuribayashi Scholarship Foundation Kuribayashi Scholarship Foundation research grant
Supported by: Ministry of Economy, Trade and Industry the Regional Innovation Creation Project (2010)

Abstract

Quercetin, a flavonol, is a functional compound that is abundant in onions and is known to have antioxidant and anti-inflammatory effects. Quercetin and its glucoside are known to function as peroxisome proliferator-activated receptor (PPAR) ligands and showed high PPAR-α transactivation activity but little PPAR-γ transactivation activity in some reports. In this study, we demonstrated that an aqueous extract of a quercetin-rich onion cultivar increased transactivation activities not only of PPAR-α but also of PPAR-γ. We isolated (9S,12S,13S)-(10E)-9,12,13-trihydroxyoctadec-10-enoic acid (pinellic acid) obtained from the aqueous extract using PPAR-γ transactivation as an index. Furthermore, it was revealed that pinellic acid could transactivate PPAR-α. Our findings are the first report mentioned showing that trihydroxyoctadec-10-enoic acids showed PPAR-α/γ transactivation activities.

Supporting Information



Publication History

Received: 13 October 2020

Accepted after revision: 19 December 2020

Article published online:
17 January 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. Onions–a global benefit to health. Phytother Res 2002; 16: 603-615
  • 2 Slimestad R, Fossen T, Vagen IM. Onions: a source of unique dietary flavonoids. J Agric Food Chem 2007; 55: 10067-10080
  • 3 Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 2018; 40: 68-75
  • 4 Okamoto D, Noguchi Y, Muro T, Morishita M. Genetic variation of quercetin glucoside content in onion (Allium cepa L.). J Jpn Soc Hortic Sci 2006; 75: 100-108
  • 5 Wilkinson AS, Monteith GR, Shaw PN, Lin CN, Gidley MJ, Roberts-Thomson SJ. Effects of the mango components mangiferin and quercetin and the putative mangiferin metabolite norathyriol on the transactivation of peroxisome proliferator-activated receptor isoforms. J Agric Food Chem 2008; 56: 3037-3042
  • 6 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20: 649-688
  • 7 Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: From orphan receptors to drug discovery. J Med Chem 2000; 43: 527-550
  • 8 Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: you are what you eat!. Food Chem 2015; 179: 305-310
  • 9 Kim B, Choi YE, Kim HS. Eruca sativa and its flavonoid components, quercetin and isorhamnetin, improve skin barrier function by activation of peroxisome proliferator-activated receptor (PPAR)-alpha and suppression of inflammatory cytokines. Phytother Res 2014; 28: 1359-1366
  • 10 Devarshi PP, Jones AD, Taylor EM, Stefanska B, Henagan TH. Quercetin and quercetin-rich red onion extract alter Pgc-1α promoter methylation and splice variant expression. PPAR Res 2017; 2017: 3235693
  • 11 Shirahata T, Sunazuka T, Yoshida K, Yamamoto D, Harigaya Y, Kuwajima I, Nagai T, Kiyohara H, Yamada H, Ōmura S. Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acids. Tetrahedron 2006; 62: 9483-9496
  • 12 Shirahata T, Sunazuka T, Yoshida K, Yamamoto D, Harigaya Y, Nagai T, Kiyohara H, Yamada H, Kuwajima I, Omura S. Total synthesis and adjuvant activity of all stereoisomers of pinellic acid. Bioorg Med Chem Lett 2003; 13: 937-941
  • 13 Nagai T, Shimizu Y, Shirahata T, Sunazuka T, Kiyohara H, Omura S, Yamada H. Oral adjuvant activity for nasal influenza vaccines caused by combination of two trihydroxy fatty acid stereoisomers from the tuber of Pinellia ternata. Int Immunopharmacol 2010; 10: 655-661
  • 14 Nagai T, Kiyohara H, Munakata K, Shirahata T, Sunazuka T, Harigaya Y, Yamada H. Pinellic acid from the tuber of Pinellia ternata Breitenbach as an effective oral adjuvant for nasal influenza vaccine. Int Immunopharmacol 2002; 2: 1183-1193
  • 15 Lee G, Elwood F, McNally J, Weiszmann J, Lindstrom M, Amaral K, Nakamura M, Miao S, Cao P, Learned RM, Chen JL, Li Y. T0070907, a selective ligand for peroxisome proliferator-activated receptor gamma, functions as an antagonist of biochemical and cellular activities. J Biol Chem 2002; 277: 19649-19657
  • 16 Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, McKee DD, Galardi CM, Plunket KD, Nolte RT, Parks DJ, Moore JT, Kliewer SA, Willson TM, Stimmel JB. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPAR alpha. Nature 2002; 415: 813-817
  • 17 Bernardes A, Souza PC, Muniz JR, Ricci CG, Ayers SD, Parekh NM, Godoy AS, Trivella DB, Reinach P, Webb P, Skaf MS, Polikarpov I. Molecular mechanism of peroxisome proliferator-activated receptor alpha activation by WY14643: a new mode of ligand recognition and receptor stabilization. J Mol Biol 2013; 425: 2878-2893
  • 18 Hamberg M, Olsson U. Efficient and specific conversion of 9-lipoxygenase hydroperoxides in the beetroot. Formation of pinellic acid. Lipids 2011; 46: 873-878
  • 19 Graveland A. Enzymatic oxidations of linoleic acid and glycerol-1-monolinoleate in doughs and flour-water suspensions. J Am Oil Chem Soc 1970; 47: 352-361
  • 20 Moll C, Biermann U, Grosch W. Occurrence and formation of bitter-tasting trihydroxy fatty-acids in soybeans. J Agric Food Chem 1979; 27: 239-243
  • 21 Sessa DJ, Gardner HW, Kleiman R, Weisleder D. Oxygenated fatty-acid constituents of soybean phosphatidylcholines. Lipids 1977; 12: 613-619
  • 22 Üstünes L, Claeys M, Laekeman G, Herman AG, Vlietinck AJ, Özer A. Isolation and identification of two isomeric trihydroxy octadecenoic acids with prostaglandin E-like activity from onion bulbs (Allium cepa). Prostaglandins 1985; 29: 847-865
  • 23 Hamberg M, Hamberg G. Peroxygenase-catalyzed fatty acid epoxidation in cereal seeds – Sequential oxidation of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid. Plant Physiol 1996; 110: 807-815
  • 24 Hamberg M. An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids 1999; 34: 1131-1142
  • 25 Walters DR, Cowley T, Weber H, Nashaat NI. Changes in oxylipins in compatible and incompatible interactions between oilseed rape and the downy mildew pathogen Peronospora parasitica. Physiol Mol Plant Pathol 2005; 67: 268-273
  • 26 Ohta H, Shida K, Peng YL, Furusawa I, Shishiyama J, Aibara S, Morita Y. The occurrence of lipid hydroperoxide-decomposing activities in rice and the relationship of such activities to the formation of antifungal substances. Plant Cell Physiol 1990; 31: 1117-1122
  • 27 Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerre-Tugaye MT, Rosahl S, Castresana C, Hamberg M, Fournier J. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 2005; 139: 1902-1913
  • 28 Masui H, Kondo T, Kojima M. An antifungal compound, 9,12,13-trihydroxy-(e)-10-octadecenoic acid, from colocasia-antiquorum inoculated with ceratocystis-fimbriata. Phytochemistry 1989; 28: 2613-2615
  • 29 Umeno A, Sakashita M, Sugino S, Murotomi K, Okuzawa T, Morita N, Tomii K, Tsuchiya Y, Yamasaki K, Horie M, Takahara K, Yoshida Y. Comprehensive analysis of PPARgamma agonist activities of stereo-, regio-, and enantio-isomers of hydroxyoctadecadienoic acids. Biosci Rep 2020; 40: BSR20193767
  • 30 Nording ML, Yang J, Hegedus CM, Bhushan A, Kenyon NJ, Davis CE, Hammock BD. Endogenous levels of five fatty acid metabolites in exhaled breath condensate to monitor asthma by high-performance liquid chromatography: electrospray tandem mass spectrometry. IEEE Sens J 2010; 10: 123-130
  • 31 Chiba T, Nakahara T, Kohda F, Ichiki T, Manabe M, Furue M. Measurement of trihydroxy-linoleic acids in stratum corneum by tape-stripping: possible biomarker of barrier function in atopic dermatitis. PLoS One 2019; 14: e0210013
  • 32 Korbecki J, Bobinski R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 2019; 68: 443-458
  • 33 Zambon A, Gervois P, Pauletto P, Fruchart JC, Staels B. Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPAR-alpha activators: clinical and experimental evidence. Arterioscler Thromb Vasc Biol 2006; 26: 977-986
  • 34 Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPARgamma. J Biol Chem 2000; 275: 28028-28032
  • 35 Ueki S, Matsuwaki Y, Kayaba H, Oyamada H, Kanda A, Usami A, Saito N, Chihara J. Peroxisome proliferator-activated receptor gamma regulates eosinophil functions: a new therapeutic target for allergic airway inflammation. Int Arch Allergy Immunol 2004; 134 (Suppl. 01) 30-36
  • 36 Zheng J, Plopper CG, Lakritz J, Storms DH, Hammock BD. Leukotoxin-diol–a putative toxic mediator involved in acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2001; 25: 434-438
  • 37 Wang XH, Liu JQ, Chen S, Yin Y, Liu Y, Zhang C. Hydroxy-octadecenoic acids instead of phorbol esters are responsible for the Jatropha curcas kernel cakeʼs toxicity. Commun Biol 2020; 3: 228
  • 38 Levan SR, Stamnes KA, Lin DL, Panzer AR, Fukui E, McCauley K, Fujimura KE, McKean M, Ownby DR, Zoratti EM, Boushey HA, Cabana MD, Johnson CC, Lynch SV. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat Microbiol 2019; 4: 1851-1861
  • 39 Moghaddam MF, Grant DF, Cheek JM, Greene JF, Williamson KC, Hammock BD. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med 1997; 3: 562-566
  • 40 Zhang Y, Cui Y, Wang XL, Shang X, Qi ZG, Xue J, Zhao X, Deng M, Xie ML. PPARalpha/gamma agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Cytokine 2015; 75: 127-135
  • 41 Scirpo R, Fiorotto R, Villani A, Amenduni M, Spirli C, Strazzabosco M. Stimulation of nuclear receptor peroxisome proliferator-activated receptor-gamma limits NF-kappaB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 2015; 62: 1551-1562
  • 42 Fuchs D, Tang X, Johnsson AK, Dahlen SE, Hamberg M, Wheelock CE. Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent process. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865: 158611
  • 43 Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B, Capron M, Dombrowicz D. Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation. J Exp Med 2003; 198: 411-421
  • 44 Nagai T, Arai Y, Emori M, Nunome SY, Yabe T, Takeda T, Yamada H. Anti-allergic activity of a Kampo (Japanese herbal) medicine “Sho-seiryu-to (Xiao-Qing-Long-Tang)” on airway inflammation in a mouse model. Int Immunopharmacol 2004; 4: 1353-1365
  • 45 Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 2013; 48: 452-458