Subscribe to RSS
DOI: 10.1055/a-1344-8713
Four-Step One-Pot Catalytic Asymmetric Synthesis of Polysubstituted Tricyclic Compounds: Lipase-Catalyzed Dynamic Kinetic Resolution Followed by an Intramolecular Diels–Alder Reaction
This work was financially supported by the JSPS KAKENHI [18HO4411 (Middle Molecular Strategy) and 18H02556] and the Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED under grant number JP20am0101084.
Abstract
Starting from readily available tertiary alcohols, four different reactions (a 1,3-migration of a hydroxy group, kinetic resolution, racemization, and an intramolecular Diels–Alder reaction) took place under co-catalysis by lipase and oxovanadium compounds in a one-pot process to produce polysubstituted tricyclic carbon frameworks in high yields and with high enantioselectivities. The key to the success of this process was the discovery that a silyl group attached to the terminal carbon of the vinyl moiety completely controls the direction of hydroxy group migration
Key words
allylic alcohols - asymmetric synthesis - Diels–Alder reaction - dynamic kinetic resolution - lipase - one-pot reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1344-8713.
- Supporting Information
Publication History
Received: 07 December 2020
Accepted after revision: 04 January 2021
Accepted Manuscript online:
04 January 2021
Article published online:
26 January 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Broadwater SJ, Roth SL, Price KE, Kobašlija M, McQuade DT. Org. Biomol. Chem. 2005; 3: 2899
- 1b Hong B.-C, Raja A, Sheth V. Synthesis 2015; 47: 3257
- 1c Hayashi Y. Chem. Sci. 2016; 7: 866
- 1d Wilson JC, Boyd MJ, Giroux S, Bandarage UK. J. Org. Chem. 2020; 85: 12644
- 1e Baumgartner Y, Baudoin O. ACS Catal. 2020; 10: 10508
- 1f Muzalevskiy VM, Belyaeva KV, Trofimov BA, Nenajdenko VG. J. Org. Chem. 2020; 85: 9993
- 1g Schwertz G, Zanetti A, De Oliveira MN, Fernandez MA. G, Amara Z, Cossy J. J. Org. Chem. 2020; 85: 9607
- 1h Devlin R, Jones DJ, McGlacken GP. Org. Lett. 2020; 22: 5223
- 1i Nguyen TK, Titov GD, Khoroshilova OV, Kinzhalov MA, Rostovskii NV. Org. Biomol. Chem. 2020; 18: 4971
- 1j Moreira NM, Martelli LS. R, de Julio KI. R, Zukerman-Schpector J, Opatz T, Corrêa AG. Eur. J. Org. Chem. 2020; 4563
- 1k Bernardi E, Colombo L, De Lorenzi E, Carraro M, Serra M. Eur. J. Org. Chem. 2020; 3568
- 1l Rokade BV, Guiry PJ. J. Org. Chem. 2020; 85: 6172
- 2a Akai S. Chem. Lett. 2014; 43: 746
- 2b de Miranda AS, Miranda LS. M, de Souza RO. M. A. Biotechnol. Adv. 2015; 33: 372
- 2c Verho O, Bäckvall JE. J. Am. Chem. Soc. 2015; 137: 3996
- 2d Takizawa S, Gröger H, Sasai H. Chem. Eur. J. 2015; 21: 8992
- 2e Seddigi ZS, Malik MS, Ahmed SA, Babalghith AO, Kamal A. Coord. Chem. Rev. 2017; 348: 54
- 2f Akai S. In Future Directions in Biocatalysis, 2nd ed. . Matsuda T. Elsevier; Amsterdam: 2017: Chap. 16, 337
- 3a Martín-Matute B, Edin M, Bogár K, Bäckvall J.-E. Angew. Chem. Int. Ed. 2004; 43: 6535
- 3b Choi JH, Choi YK, Kim YH, Park ES, Kim EJ, Kim MJ, Park J. J. Org. Chem. 2004; 69: 1972
- 3c Manzini S, Urbina-Blanco CA, Poater A, Slawin AM. Z, Cavallo L, Nolan SP. Angew. Chem. Int. Ed. 2012; 51: 1042
- 3d Yun I, Park JY, Park J, Kim M.-J. J. Org. Chem 2019; 84: 16293
- 4a Dinh PM, Howarth JA, Hudnott AR, Williams JM. J, Harris W. Tetrahedron Lett. 1996; 37: 7623
- 4b Samec JS. M, Bäckvall JE, Andersson PG, Brandt P. Chem. Soc. Rev. 2006; 35: 237
- 5 Engström K, Johnston EV, Verho O, Gustafson KP. J, Shakeri M, Tai CW, Bäckvall JE. Angew. Chem. Int. Ed. 2013; 52: 14006
- 6a El-Sepelgy O, Alandini N, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 13602 ; corrigendum: Angew. Chem. Int. Ed. 2017, 56, 3129
- 6b El-Sepelgy O, Brzozowska A, Rueping M. ChemSusChem 2017; 10: 1664
- 6c Gustafson KP. J, Guðmundsson A, Lewis K, Bäckvall JE. Chem. Eur. J. 2017; 23: 1048
- 6d Yang Q, Zhang N, Liu M, Zhou S. Tetrahedron Lett. 2017; 58: 2487
- 7a Akai S, Tanimoto K, Kanao Y, Egi M, Yamamoto T, Kita Y. Angew. Chem. Int. Ed. 2006; 45: 2592
- 7b Akai S, Hanada R, Fujiwara N, Kita Y, Egi M. Org. Lett. 2010; 12: 4900
- 7c Egi M, Sugiyama K, Saneto M, Hanada R, Kato K, Akai S. Angew. Chem. Int. Ed. 2013; 52: 3654
- 7d Sugiyama K, Oki Y, Kawanishi S, Kato K, Ikawa T, Egi M, Akai S. Catal. Sci. Technol. 2014; 6: 5023
- 7e Kawanishi S, Sugiyama K, Oki Y, Ikawa T, Akai S. Green Chem. 2017; 19: 411
- 7f Sugiyama K, Kawanishi S, Oki Y, Kamiya M, Hanada R, Egi M, Akai S. Bioorg. Med. Chem. 2018; 26: 1378
- 7g Kawanishi S, Oki S, Kundu D, Akai S. Org. Lett. 2019; 21: 2978
- 7h Higashio K, Katsuragi S, Kundu D, Adebar N, Plass C, Kühn F, Gröger H, Akai S. Eur. J. Org. Chem. 2020; 1961
- 7i Kühn F, Katsuragi S, Oki Y, Scholz C, Akai S, Gröger H. Chem. Commun. 2020; 56: 2885
- 8 For an example, see: Warner MC, Shevchenko GA, Jouda S, Bogár K, Bäckvall JE. Chem. Eur. J. 2013; 19: 13859
- 9 Koszelewski D, Borys F, Brodzka A, Ostaszewski R. Eur. J. Org. Chem. 2019; 2019: 1653
- 10 Akai S, Tanimoto K, Kita Y. Angew. Chem. Int. Ed. 2004; 43: 1407
- 11a Corey EJ, Da Silva Jardine P, Mohri T. Tetrahedron Lett. 1988; 29: 6409
- 11b Corey EJ, Da Silva Jardine P, Rohloff JC. J. Am. Chem. Soc. 1988; 110: 3672
- 11c Corey EJ, Da Silva Jardine P. Tetrahedron Lett. 1989; 30: 7297
- 12 Yamada S, Nagashima S, Takaoka Y, Torihara S, Tanaka M, Suemune H, Aso M. J. Chem. Soc., Perkin Trans. 1 1998; 1269
- 13 The conjugated dienol 2a is prone to decompose even when stored under argon atmosphere in a refrigerator, whereas the unconjugated alcohol 6a is stable and no decomposition was observed during storage in a refrigerator for more than six months. Similarly, the silylated dienols 2b and 2c decomposed in a refrigerator, whereas the unconjugated alcohols 6b–f were all stable.
- 14 Because the lipase-catalyzed KR of (±)-2a proceeded with high enantioselectivity in acetone, CH2Cl2, and acetonitrile in our previous study,10 these solvents were chosen for a preliminary study of the migration to find suitable conditions for the DKR.
- 15 Although the results of KR of (±)-2a in CH2Cl2 fluctuated, we found that the addition of MS4Å under the KR conditions dramatically improved their reproducibility. We are now investigating the effect of MS4Å.
- 16 Chen C.-S, Fujimoto Y, Girdaukas G, Sih CJ. J. Am. Chem. Soc. 1982; 104: 7294
- 17 Ethyl (2aS,3R,4S,8aR,8bS)-2-Oxo-4-(trimethylsilyl)-2a,3,4,6,7, 8,8a,8b-octahydro-2H-naphtho[1,8-bc]furan-3-carboxylate (4bA); Typical Procedure (Method I in Scheme [4]) To a solution of (±)-6b (20 mg, 0.10 mmol) in CH2Cl2 (2.0 mL) at rt were added 7A (43 mg, 0.20 mmol), MS4Å (40 mg), immobilized CAL-B (60 mg) and O=V(OSiPh3)3 (8.9 mg, 0.010 mmol). The mixture was stirred at 35 °C for 2 h, and then V-MPS4 (10 mg, 0.0020 mmol) was added at the same temperature. The mixture was stirred at 35 °C for 2 d then filtered through a Celite pad, that was washed with Et2O. The combined filtrates were concentrated under reduced pressure, and the residue was purified by column chromatography [silica gel, EtOAc–hexane (1:10)] to give a colorless oil; yield: 24 mg (72%, 93% ee); [α]D 22 = 45.5 (c 1.0, CHCl3). IR (neat): 1730, 1786 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.32–5.30 (m, 1 H), 4.65 (ddd, J = 4.5, 8.5, 13.0 Hz, 1 H), 4.22–4.10 (m, 2 H), 3.21–3.17 (m, 1 H), 3.12 (dd, J = 1.0, 4.0 Hz, 1 H), 2.31–2.23 (m, 3 H), 2.15 (d, J = 1.0 Hz, 1 H), 1.97–1.93 (m, 1 H), 1.91–1.89 (m, 1 H), 1.70–1.61 (m, 1 H), 1.43–1.33 (m, 1 H), 1.25 (t, J = 7.0 Hz, 3 H), 0.09 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 174.6, 173.5, 137.0, 121.1, 77.9, 61.3, 42.6, 37.4, 36.6, 30.6, 26.2, 24.3, 19.4, 14.2, –2.9. HRMS (EI): m/z [M+] calcd for C17H26O4Si: 322.1600; found: 322.1599
- 18a Engström K, Vallin M, Syrén P.-O, Hult K, Bäckvall JE. Org. Biomol. Chem. 2011; 9: 81
- 18b Xia B, Xu J, Xiang Z, Cen Y, Hu Y, Lin X, Wu Q. ACS Catal. 2017; 7: 4542
- 18c Zhang Y, Zhu Q, Fei Z, Lin X, Xia B, Wu Q. Eur. Polym. J. 2019; 119: 52
- 18d Cen Y, Li D, Xu J, Wu Q, Wu Q, Lin X. Adv. Synth. Catal. 2019; 361: 126
- 18e Xu J, Cen Y, Singh W, Fan J, Wu L, Lin X, Zhou J, Huang M, Reetz MT, Wu Q. J. Am. Chem. Soc. 2019; 141: 7934
- 19a Kim M.-J, Chung YI, Choi YK, Lee HK, Kim D, Park J. J. Am. Chem. Soc. 2003; 125: 11494
- 19b Borén L, Martín-Matute B, Xu Y, Córdova A, Bäckvall JE. Chem. Eur. J. 2005; 12: 225
- 19c Koul S, Koul JL, Singh B, Kapoor M, Parshad R, Manhas KS, Taneja SC, Qazi GN. Tetrahedron: Asymmetry 2005; 16: 2575
For recent reviews, see:
For recent examples, see:
For recent reviews, see:
For some examples of the creation of (S)-selective mutants, see:
For esterases for enantioselective esterification of (S)-alcohols, see: