RSS-Feed abonnieren
DOI: 10.1055/a-1295-0658
Schlaganfall als periprozedurale Komplikation kardialer Interventionen
Stroke during cardiac interventionsZUSAMMENFASSUNG
Der periprozedurale Schlaganfall gehört zu den relevantesten Komplikationen kardialer Interventionen und beeinflusst die Prognose der Betroffenen. Interventions-spezifische Faktoren, Patienten-spezifische Faktoren als auch die Erfahrung des Interventionalisten bzw. des intervenierenden Zentrums bestimmen das periprozedurale Schlaganfallrisiko. Anhand einer intensiven Auseinandersetzung mit möglichen Risikofaktoren für einen Schlaganfall, dem verstärkten Einsatz bildgebender Verfahren und technischer Weiterentwicklungen konnte in den letzten Jahren eine Senkung des periprozeduralen Schlaganfallrisikos erreicht werden, das nach kardialer Operation etwa 1 %, nach katheterbasiertem Verfahren zwischen 0,1–3 % und nach Kardioversion etwa 0,1 % beträgt.
Relevant für die Therapie des periprozeduralen Schlaganfalls erscheint neben einer diesbezüglichen interdisziplinären Awareness die Vorhaltung von Standard Operating Procedures (SOPs), die neben präventiven Maßnahmen, das Blutdruckmanagement, die post-interventionelle Gerinnungshemmung als auch deren Antagonisierung im Falle einer (intrakraniellen) Blutung adressieren. Nach akuter zerebraler Ischämie mit behinderndem neurologischem Defizit kann im interdisziplinären Dialog auf der Basis einer Einzelfallentscheidung nach bestimmten kardialen Prozeduren eine systemische Thrombolyse und/oder eine mechanische Rekanalisation erwogen werden, auch wenn keine spezifischen Studien zur Effizienz und Sicherheit dieser Therapieverfahren für prozedurassoziierte Schlaganfälle vorliegen.
ABSTRACT
Procedure-related stroke is one of the most relevant complications of cardiac interventions and impacts on the prognosis of affected patients. The peri-procedural stroke risk is related to intervention-specific factors, patient-related factors and to the experience of the interventionist and the intervening center, respectively. Due to an intensive analysis of potential stroke risk factors, the increased use of imaging techniques and technical developments, there is a reduction of peri-procedural stroke rate in recent years. In general, peri-procedural stroke risk after cardiac surgery is about 1 %, 0.1–3 % after catheter-based interventions, and about 0.1 % after cardioversion of atrial fibrillation. In addition to interdisciplinary awareness regarding peri-procedural stroke, standard operating procedures (SOPs) addressing preventive measures, blood pressure management, post-interventional coagulation management as well as immediate antagonization of anticoagulation in case of (intracranial) bleeding appear to be relevant. In case of acute ischemic stroke with clinically-relevant neurological deficit, intravenous thrombolysis and/or endovascular treatment can be considered case-by-case after specific cardiac interventions, despite of the fact that there are no studies demonstrating efficacy and safety after procedure-related stroke.
Schlüsselwörter
Ischämischer Schlaganfall - MRT - Katheterintervention - kardiale Operation - Antikoagulation - PräventionKey words
Stroke - MRI - catheter based intervention - cardiac surgery - anticoagulation - preventionPublikationsverlauf
Artikel online veröffentlicht:
14. Dezember 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Deutsche Herzstiftung e. V. Herzbericht 2018
- 2 Gaudino M, Rahouma M, Di Mauro M. et al Early Versus Delayed Stroke After Cardiac Surgery: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2019; 8 (13) e012447
- 3 Devgun JK, Gul S, Mohananey D, Jones BM. et al Cerebrovascular Events After Cardiovascular Procedures: Risk Factors, Recognition, and Prevention Strategies. J Am Coll Cardiol 2018; 71 (17) 1910-1920
- 4 Shaban A, Leira EC. Neurological Complications in Patients with Systemic Lupus Erythematosus. Curr Neurol Neurosci Rep 2019; 19 (12) 97
- 5 Hassell ME, Nijveldt R, Roos YB. et al Silent cerebral infarcts associated with cardiac disease and procedures. Nat Rev Cardiol 2013; 10 (12) 696-706
- 6 Raphael J, Moss HE, Roth S., Raphael J. et al Perioperative Visual Loss in Cardiac Surgery. J Cardiothorac Vasc Anesth 2019; 33 (05) 1420-1429
- 7 Lansky AJ, Messé SR, Brickman AM. et al Proposed Standardized Neurological Endpoints for Cardiovascular Clinical Trials: An Academic Research Consortium Initiative. Eur Heart J 2018; 39 (19) 1687-1697
- 8 Häusler KG, Tebbe U, Willems S. et al Neurologische Komplikationen nach linksatrialer Katheterablation bei Vorhofflimmern. Nervenheilkunde 2012; 11: 830-835
- 9 Häusler KG, Neugebauer H. Closure of Patent Foramen Ovale after Ischemic Stroke. Dtsch Med Wochenschr 2019; 144 (22) 1561-1569
- 10 Häusler KG, Landmesser U. Left atrial appendage closure in non-valvular atrial fibrillation. Herz 2019; 44 (04) 310-314
- 11 Harrar DB, Salussolia CL, Vittner P. et al Stroke After Cardiac Catheterization in Children. Pediatr Neurol 2019; 100: 42-48
- 12 Stein L, Thaler A, Liang JW. et al Intermediate-Term Risk of Stroke Following Cardiac Procedures in a Nationally Representative Data Set. J Am Heart Assoc 2017; 6 (12) e006900
- 13 Werner N, Zahn R, Zeymer U. Stroke in patients undergoing coronary angiography and percutaneous coronary intervention: incidence, predictors, outcome and therapeutic options. Expert Rev Cardiovasc Ther 2012; 10 (10) 1297-305
- 14 Alkhouli M, Alqahtani F, Tarabishy A. et al Incidence, Predictors, and Outcomes of Acute Ischemic Stroke Following Percutaneous Coronary Intervention. JACC Cardiovasc Interv 2019; 12: 1497-1506
- 15 Aradi D, Komócsi A, Vorobcsuk A. et al Impact of clopidogrel and potent P2Y 12 -inhibitors on mortality and stroke in patients with acute coronary syndrome or undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Thromb Haemost 2013; 109 (01) 93-101
- 16 Weimar C, Bilbilis K, Rekowski J. et al Safety of Simultaneous Coronary Artery Bypass Grafting and Carotid Endarterectomy Versus Isolated Coronary Artery Bypass Grafting: A Randomized Clinical Trial. Stroke 2017; 48 (10) 2769-2775
- 17 Lorusso R, Moscarelli M, Di Franco A. et al Association Between Coronary Artery Bypass Surgical Techniques and Postoperative Stroke. J Am Heart Assoc. 2019; 8 (24) e013650
- 18 Jayaraman DK, Mehla S, Joshi S. et al Update in the Evaluation and Management of Perioperative Stroke. Curr Treat Options Cardiovasc Med 2019; 21 (11) 76
- 19 Häusler KG, Kuramatsu JB. Mechanische Herzklappen und intrakranielle Blutung, Connexi – das Konferenzmagazin. 2019: 3
- 20 Armijo G, Nombela-Franco L, Tirado-Conte G. Cerebrovascular Events After Transcatheter Aortic Valve Implantation. Front Cardiovasc Med 2018; 5: 104
- 21 Teitelbaum M, Kotronias RA, Sposato LA. et al Cerebral Embolic Protection in TAVI: Friend or Foe. Interv Cardiol 2019; 14 (01) 22-25
- 22 Caton MT, Huff JS. Spinal Cord Ischemia. In: StatPearls. Treasure Island (FL): StatPearls Publishing 2020
- 23 Gialdini G, Parikh NS, Chatterjee A. et al Rates of Spinal Cord Infarction After Repair of Aortic Aneurysm or Dissection. Stroke 2017; 48 (08) 2073-2077
- 24 Moulakakis KG, Alexiou VG, Karaolanis G. et al Spinal Cord Ischemia following Elective Endovascular Repair of Infrarenal Aortic Aneurysms. Ann Vasc Surg 2018; 52: 280-291
- 25 Kirchhof P, Benussi S, Kotecha D. et al 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016; 18: 1609-78
- 26 Airaksinen KE, Grönberg T, Nuotio I. et al Thromboembolic complications after cardioversion of acute atrial fibrillation: the FinCV (Finnish CardioVersion) study. J Am Coll Cardiol 2013; 62 (13) 1187-92
- 27 Andrade JG, Mitchell LB. Periprocedural Anticoagulation for Cardioversion of Acute Onset Atrial Fibrillation and Flutter: Evidence Base for Current Guidelines. Can J Cardiol. 2019; 35 (10) 1301-1310
- 28 Ezekowitz MD, Pollack CV, Halperin JL. et al Apixaban compared to heparin/vitamin K antagonist in patients with atrial fibrillation scheduled for cardioversion: the EMANATE trial. Eur Heart J 2018; 39 (32) 2959-2971
- 29 Kirchhof P, Haeusler KG, Blank B. et al Apixaban in patients at risk of stroke undergoing atrial fibrillation ablation. Eur Heart J 2018; 39 (32) 2942-2955
- 30 Ledwoch J, Franke J, Akin I. et al WATCHMAN Versus ACP or Amulet – From the German Left Atrial Appendage Occluder Registry LAARGE. EuroIntervention. 2020. Online ahead of print
- 31 Rillig A, Bellmann B, Skurk C. et al Left atrial appendage angiography is associated with the incidence and number of magnetic resonance imaging-detected brain lesions after percutaneous catheter-based left atrial appendage closure. Heart Rhythm 2018; 15 (01) 3-8
- 32 Wilkins B, Fukutomi M, De Backer O. et al Left Atrial Appendage Closure: Prevention and Management of Periprocedural and Postprocedural Complications. Card Electrophysiol Clin 2020; 12 (01) 67-75
- 33 Squiers JJ, Edgerton JR, Squiers JJ. et al Surgical Closure of the Left Atrial Appendage: The Past, The Present, The Future. J Atr Fibrillation 2018; 10 (05) 1642
- 34 Diener H-C, Grau A, Baldus S. et al Kryptogener Schlaganfall und offenes Foramen ovale, S2e-Leitlinie. Der Nervenarzt 2018; 89: 1143-1153
- 35 Merkler AE, Gialdini G, Yaghi S. et al Safety Outcomes After Percutaneous Transcatheter Closure of Patent Foramen Ovale. Stroke 2017; 48 (11) 3073-3077
- 36 Powers WJ, Rabinstein AA, Ackerson T. et al Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke Stroke. 2019; 50 (12) e344-e418
- 37 Steffel J, Verhamme P, Potpara TS. et al The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 2018; 39 (16) 1330-1393
- 38 Thomalla G, Simonsen CZ, Boutitie F. et al MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. N Engl J Med 2018; 379 (07) 611-622
- 39 Ma H, Campbell BCV, Parsons MW. et al Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. N Engl J Med 2019; 380 (19) 1795-1803
- 40 Albers GW, Marks MP, Kemp S. et al Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N Engl J Med 2018; 378 (08) 708-718
- 41 Nogueira RG, Jadhav AP, Haussen DC. et al Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med 2018; 378 (01) 11-21
- 42 Haeusler KG, Huttner HB, Kuramatsu JB. Comment on 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2019; 40 (25) 2092
- 43 Indja B, Woldendorp K, Vallely MP. et al Silent Brain Infarcts Following Cardiac Procedures: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2019; 8 (09) e010920
- 44 Tsiouris A, Heliopoulos I, Mikroulis D. et al Factors defining occurrence of ischemic and hemorrhagic strokes during continuous flow left ventricular assist device support. Gen Thorac Cardiovasc Surg 2020; 68 (04) 319-327
- 45 Châteauneuf G, Nazif TM, Beaupré F. et al Cerebrovascular events after transcatheter mitral valve interventions: a systematic review and meta-analysis. Heart 2020 Apr 17
- 46 Barth S, Hamm K, Fodor S. et al Incidence and Clinical Impact of Cerebral Lesions after the MitraClip® Procedure. J Heart Valve Dis 2017; 26 (02) 175-184
- 47 Bellmann B, Fiebach JB, Guttmann S. et al Incidence of MRI-detected brain lesions and neurocognitive function after electrical cardioversion in anticoagulated patients with persistent atrial fibrillation. Int J Cardiol 2017; 243: 239-243
- 48 Herm J, Fiebach JB, Koch L. et al Neuropsychological effects of MRI-detected brain lesions after left atrial catheter ablation for atrial fibrillation: long-term results of the MACPAF study. Circ Arrhythm Electrophysiol 2013; 6 (05) 843-50
- 49 Oktay Tureli H, Ungan I, Tureli D. et al Risk of cerebral embolism after interventional closure of symptomatic patent foramen ovale or atrial septal defect: a diffusion-weighted MRI and neuron-specific enolase-based study. J Invasive Cardiol 2013; 25 (10) 519-24