Subscribe to RSS
DOI: 10.1055/a-1288-2990
ANIPE-Cu Catalyst Enables Highly Enantioselective Markovnikov Hydroboration of α-Olefins
This work was financially supported by the National Natural Science Foundation of China (NSF, Grant Numbers 91856111, 21871288, 21690074, and 21821002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB20000000).
Abstract
Asymmetric hydroboration of simple and unactivated terminal alkenes (α-olefins), feedstock chemicals derived from the petrochemical industry, has not been efficiently realized for past decades. Using a bulky ANIPE ligand, we achieved a rare example of highly enantioselective copper-catalyzed Markovnikov hydroboration of α-olefins. The chiral secondary alkylboronic ester products were obtained in moderate to good yields and regioselectivities with excellent enantioselectivities.
1 Introduction
2 Conditions Optimization
3 Substrate Scope
4 Application
5 Mechanistic Discussion
6 Conclusions and Future Directions
Key words
asymmetric hydroboration - α-olefin - copper catalysis - ligand design - privileged chiral fragment - N-heterocyclic carbinePublication History
Received: 26 September 2020
Accepted after revision: 12 October 2020
Accepted Manuscript online:
12 October 2020
Article published online:
27 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
- 1b Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
- 1c Fan W, Li L, Zhang GJ. J. Org. Chem. 2019; 84: 5987
- 2 Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011
- 3a Crudden CM, Edwards D. Eur. J. Org. Chem. 2003; 4695
- 3b Carroll A.-M, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
- 3c Thomas SP, Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1896
- 4a Hayashi T, Matsumoto Y, Ito Y. J. Am. Chem. Soc. 1989; 111: 3426
- 4b Crudden CM, Hleba YB, Chen AC. J. Am. Chem. Soc. 2004; 126: 9200
- 4c Hu N, Zhao G, Zhang Y, Liu X, Li G, Tang W. J. Am. Chem. Soc. 2015; 137: 6746
- 4d Chakrabarty S, Takacs JM. J. Am. Chem. Soc. 2017; 139: 6066
- 4e Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
- 4f Jang WJ, Song SM, Moon JH, Lee JY, Yun J. J. Am. Chem. Soc. 2017; 139: 13660
- 4g Corberan R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
- 4h Zhang L, Zuo Z, Wan X, Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
- 4i Chen X, Cheng Z, Lu Z. ACS Catal. 2019; 9: 4025
- 4j Yu S, Wu C, Ge S. J. Am. Chem. Soc. 2017; 139: 6526
- 4k Chen X, Cheng Z, Guo J, Lu Z. Nat. Commun. 2018; 9: 3939
- 5a Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
- 5b Corberan R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
- 5c Sasaki Y, Zhong C, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 1226
- 5d Parra A, Amenos L, Guisan-Ceinos M, Lopez A, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2014; 136: 15833
- 5e Chen L, Shen J.-J, Gao Q, Xu S. Chem. Sci. 2018; 9: 5855
- 6a Chen I.-H, Yin L, Itano W, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 11664
- 6b Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2008; 47: 145
- 6c Luo Y, Roy ID, Madec AG. E, Lam HW. Angew. Chem. Int. Ed. 2014; 53: 4186
- 6d Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
- 7 Xi Y, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 6703
- 8a Coombs JR, Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
- 8b Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
- 9a Cherian AE, Lobkovsky EB, Coates GW. Chem. Commun. 2003; 2566
- 9b Cherian AE, Domski GJ, Rose JM, Lobkovsky EB, Coates GW. Org. Lett. 2005; 7: 5135
- 10a Wang F, Liu L.-J, Wang W, Li S, Shi M. Coord. Chem. Rev. 2012; 256: 804
- 10b Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
- 11a Albright A, Gawley RE. J. Am. Chem. Soc. 2011; 133: 19680
- 11b Albright A, Eddings D, Black R, Welch CJ, Gerasimchuk NN, Gawley RE. J. Org. Chem. 2011; 76: 7341
- 11c Spahn E, Albright A, Shevlin M, Pauli L, Pfaltz A, Gawley RE. J. Org. Chem. 2013; 78: 2731
- 12 Cai Y, Yang X.-T, Zhang S.-Q, Li F, Li Y.-Q, Ruan L.-X, Hong X, Shi S.-L. Angew. Chem. Int. Ed. 2018; 57: 1376
- 13a Cai Y, Zhang J.-W, Li F, Liu J.-M, Shi S.-L. ACS Catal. 2019; 9: 1
- 13b Zhang W.-B, Yang X.-T, Ma J.-B, Su Z.-M, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 5628
- 13c Shen D, Xu Y, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 14938
- 13d Cai Y, Ye X, Liu S, Shi S.-L. Angew. Chem. Int. Ed. 2019; 58: 13433
- 13e Shen D, Zhang W.-B, Li Z, Shi S.-L, Xu Y. Adv. Synth. Catal. 2020; 362: 1125
- 13f Diesel J, Finogenova AM, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489
- 14a Wang Z.-C, Shen D, Gao J, Jia X, Xu Y, Shi S.-L. Chem. Commun. 2019; 55: 8848
- 14b Wang Z.-C, Wang M, Gao J, Shi S.-L, Xu Y. Org. Chem. Front. 2019; 6: 2949
- 14c Li F, Bai X, Cai Y, Li H, Zhang S.-Q, Liu F.-H, Hong X, Xu Y, Shi S.-L. Org. Process Res. Dev. 2019; 23: 1703
- 15a Smith JR, Collins BS. L, Hesse MJ, Graham MA, Myers EL, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 9148
- 15b Iwamoto H, Imamoto T, Ito H. Nat. Commun. 2018; 9: 2290
- 16a Sadhu KM, Matteson DS. Organometallics 1985; 4: 1687
- 16b Sonawane RP, Jheengut V, Rabalakos C, Larouche-Gauthier R, Scott HK, Aggarwal VK. Angew. Chem. Int. Ed. 2011; 50: 3760
- 16c Llaveria J, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 10958
For reviews on asymmetric hydroboration, see:
For selected examples of asymmetric hydroboration, see for Rh:
For Cu:
For Co:
For examples of Cu-catalyzed asymmetric formal hydroboration using B2Pin2 and alcohol, see:
For selected examples of Cu-catalyzed asymmetric 1,4- or 1,6-borylation, see:
Other works:
For a concomitant development of ligands, see:
For relevant reports during our research or after our contributions, see: