Rofo 2021; 193(04): 399-409
DOI: 10.1055/a-1276-1773
Review

Multiparametric MRI in the Diagnosis of Prostate Cancer: Physical Foundations, Limitations, and Prospective Advances of Diffusion-Weighted MRI

Multiparametrische MRT in der Diagnose des Prostatakarzinoms: Physikalische Grundlagen, Limitationen und potenzielle Fortschritte der diffusionsgewichteten MRT
1   Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Germany
,
Frank Gerrit Zöllner
2   Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Ulrike Irmgard Attenberger
1   Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Germany
,
Stefan O. Schönberg
3   Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Germany
› Author Affiliations
Supported by: Bundesministerium für Bildung und Forschung 13GW0388A

Abstract

Background Diffusion-weighted imaging (DWI) is an essential component of the multiparametric MRI exam for the diagnosis and assessment of prostate cancer (PCa). Over the last two decades, various models have been developed to quantitatively correlate the DWI signal with microstructural characteristics of prostate tissue. The simplest approach (ADC: apparent diffusion coefficient) – currently established as the clinical standard – describes monoexponential decay of the DWI signal. While numerous studies have shown an inverse correlation of ADC values with the Gleason score, the ADC model lacks specificity and is based on water diffusion dynamics that are not true in human tissue. This article aims to explain the biophysical limitations of the standard DWI model and to discuss the potential of more complex, advanced DWI models.

Methods This article is a review based on a selective literature review.

Results Four phenomenological DWI models are introduced: diffusion tensor imaging, intravoxel incoherent motion, biexponential model, and diffusion kurtosis imaging. Their parameters may potentially improve PCa diagnostics but show varying degrees of statistical significance with respect to the detection and characterization of PCa in current studies. Phenomenological model parameters lack specificity, which has motivated the development of more descriptive tissue models that directly relate microstructural features to the DWI signal. Finally, we present two of such structural models, i. e. the VERDICT (Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors) and RSI (Restriction Spectrum Imaging) model. Both have shown promising results in initial studies regarding the characterization and prognosis of PCa.

Conclusion Recent developments in DWI techniques promise increasing accuracy and more specific statements about microstructural changes of PCa. However, further studies are necessary to establish a standardized DWI protocol for the diagnosis of PCa.

Key Points:

  • DWI is paramount to the mpMRI exam for the diagnosis of PCa.

  • Though of clinical value, the ADC model lacks specificity and oversimplifies tissue complexities.

  • Advanced phenomenological and structural models have been developed to describe the DWI signal.

  • Phenomenological models may improve diagnostics but show inconsistent results regarding PCa assessment.

  • Structural models have demonstrated promising results in initial studies regarding PCa characterization.

Citation Format

  • Wichtmann BD, Zöllner FG, Attenberger UI et al. Multiparametric MRI in the Diagnosis of Prostate Cancer: Physical Foundations, Limitations, and Prospective Advances of Diffusion-Weighted MRI. Fortschr Röntgenstr 2021; 193: 399 – 409

Zusammenfassung

Hintergrund Die diffusionsgewichtete MRT-Bildgebung (DWI) ist wesentlicher Bestandteil der multiparametrischen MRT zur Diagnostik und Beurteilung des Prostatakarzinoms (PCa). In den letzten 2 Jahrzehnten wurden diverse Modelle entwickelt, um das DWI-Signal quantitativ mit mikrostrukturellen Charakteristiken des Prostatagewebes in Beziehung zu setzen. Der einfachste, heute als klinischer Standard etablierte Ansatz (apparenter Diffusionskoeffizient, ADC) beschreibt eine monoexponentielle Abnahme des DWI-Signals. Obwohl zahlreiche Studien eine inverse Korrelation von ADC-Werten mit dem Gleason-Score zeigen konnten, weist dieses Modell eine geringe Spezifität auf und basiert auf einer Wasserdiffusionsdynamik, die im menschlichen Gewebe nicht zutrifft. Ziel dieses Artikels ist es, die biophysikalischen Grenzen des Standard-DWI-Modells zu erklären und das Potenzial komplexerer, weiterentwickelter DWI-Modelle aufzuzeigen.

Methode Bei diesem Artikel handelt es sich um eine Übersichtsarbeit auf der Basis einer selektiven Literaturaufarbeitung.

Ergebnisse Vorgestellt werden die 4 phänomenologischen DWI-Modelle Diffusion Tensor Imaging, Intravoxel Incoherent Motion, Biexponential Model und Diffusion Kurtosis Imaging, deren Parameter möglicherweise einen Mehrwert in der PCa-Diagnostik darstellen, jedoch in aktuellen Studien eine variierende statistische Signifikanz hinsichtlich der Detektion und Charakterisierung des PCa zeigen. Phänomenologischen Modellparametern mangelt es an Spezifität, was die Entwicklung von deskriptiveren Gewebemodellen motivierte, die mikrostrukturelle Merkmale direkt mit dem Signal in Zusammenhang bringen. Abschließend stellen wir 2 dieser strukturellen Modelle vor, d. h. das VERDICT (Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors) sowie das RSI (Restriction Spectrum Imaging)-Modell. Beide zeigten in ersten Studien vielversprechende Ergebnisse bezüglich der Charakterisierung und Prognose des PCa.

Schlussfolgerung Neuere Entwicklungen der DWI-Techniken lassen eine zunehmende Genauigkeit und spezifischere Aussagen über mikrostrukturelle Veränderungen des PCa erwarten. Weitere Studien sind erforderlich, um ein standardisiertes DWI-Protokoll für die Diagnostik des PCa zu etablieren.

Kernaussagen:

  • Die DWI ist für die mpMRI-Untersuchung zur Diagnose des PCa von großer Bedeutung.

  • Obwohl von hohem klinischen Wert, weist das ADC-Modell eine geringe Spezifität auf und vereinfacht die Gewebekomplexität zu stark.

  • Zur Beschreibung des DWI-Signals wurden weitergehende phänomenologische und strukturelle Modelle entwickelt.

  • Phänomenologische Modelle können zu einer Verbesserung der Diagnostik führen, liefern jedoch inkonsistente Ergebnisse hinsichtlich der Beurteilung des PCa.

  • Strukturelle Modelle zeigen in ersten Studien vielversprechende Ergebnisse hinsichtlich der Charakterisierung des PCa auf.



Publication History

Received: 02 April 2020

Accepted: 18 September 2020

Article published online:
10 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Robert-Koch-Institut und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V., Hrsg. Krebs in Deutschland für 2015/2016. Berlin: 2019 12. Aufl.. DOI: 10.25646/5977
  • 2 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms, Langversion 5.1, AWMF Registernummer: 043/022OL. 2019 https://www.leitlinienprogramm-onkologie.de/leitlinien/prostatakarzinom/ ; Stand 22nd of February 2020
  • 3 Bott SR, Birtle AJ, Taylor CJ. et al Prostate cancer management: (1) an update on localised disease. Postgrad Med J 2003; 79: 575-580 . doi:10.1136/pmj.79.936.575
  • 4 American College of Radiology. Prostate Imaging – Reporting and Data System, PI-RADS v2.1. American College of Radiology website: www.acrorg/Quality-Safety/Resources/PIRADS 2019; Stand 6th of January 2020
  • 5 Turkbey B, Rosenkrantz AB, Haider MA. et al Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 2019; 76: 340-351 . doi:10.1016/j.eururo.2019.02.033
  • 6 Franiel T, Quentin M, Mueller-Lisse UG. et al MRI of the Prostate: Recommendations on Patient Preparation and Scanning Protocol. Rofo 2017; 189: 21-28 . doi:10.1055/s-0042-119451
  • 7 Wegelin O, van Melick HHE, Hooft L. et al Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted Prostate Biopsies: A Systematic Review of In-bore versus Magnetic Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique?. Eur Urol 2017; 71: 517-531 . doi:10.1016/j.eururo.2016.07.041
  • 8 Siddiqui MM, Rais-Bahrami S, Turkbey B. et al Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015; 313: 390-397 . doi:10.1001/jama.2014.17942
  • 9 van der Leest M, Cornel E, Israel B. et al Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naive Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol 2019; 75: 570-578 . doi:10.1016/j.eururo.2018.11.023
  • 10 White NS, McDonald C, Farid N. et al Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res 2014; 74: 4638-4652 . doi:10.1158/0008-5472.CAN-13-3534
  • 11 Amboss Medizinwissen. Prostatakarzinom. https://amboss.miamed.de ; Stand 22nd of February 2020
  • 12 Le Bihan D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 2013; 268: 318-322 . doi:10.1148/radiol.13130420
  • 13 Vargas HA, Lawrence EM, Mazaheri Y. et al Updates in advanced diffusion-weighted magnetic resonance imaging techniques in the evaluation of prostate cancer. World J Radiol 2015; 7: 184-188 . doi:10.4329/wjr.v7.i8.184
  • 14 Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient. The journal of chemical physics 1965; 42: 288-292
  • 15 Bourne R, Panagiotaki E. Limitations and Prospects for Diffusion-Weighted MRI of the Prostate. Diagnostics (Basel) 2016; 6 DOI: 10.3390/diagnostics6020021.
  • 16 Nicholson C, Sykova E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci 1998; 21: 207-215 . doi:10.1016/s0166-2236(98)01261-2
  • 17 Jones DK. Diffusion MRI. Oxford University Press; 2010
  • 18 Stanisz GJ. Diffusion MR in biological systems: tissue compartments and exchange. Israel journal of chemistry 2003; 43: 33-44
  • 19 Einstein A. On the motion required by the molecular kinetic theory of heat of small particles suspended in a stationary liquid. Annalen der Physik 1905; 17: 549-560
  • 20 Gibbs P, Liney GP, Pickles MD. et al Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol 2009; 44: 572-576 . doi:10.1097/RLI.0b013e3181b4c10e
  • 21 Kim CK, Park BK, Han JJ. et al Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 2007; 31: 449-454 . doi:10.1097/01.rct.0000243456.00437.59
  • 22 Brancato V, Cavaliere C, Salvatore M. et al Non-Gaussian models of diffusion weighted imaging for detection and characterization of prostate cancer: a systematic review and meta-analysis. Sci Rep 2019; 9: 16837 . doi:10.1038/s41598-019-53350-8
  • 23 Bourne RM, Kurniawan N, Cowin G. et al Microscopic diffusivity compartmentation in formalin-fixed prostate tissue. Magn Reson Med 2012; 68: 614-620 . doi:10.1002/mrm.23244
  • 24 Bourne RM, Kurniawan N, Cowin G. et al Microscopic diffusion anisotropy in formalin fixed prostate tissue: preliminary findings. Magn Reson Med 2012; 68: 1943-1948 . doi:10.1002/mrm.24179
  • 25 Chatterjee A, Watson G, Myint E. et al Changes in Epithelium, Stroma, and Lumen Space Correlate More Strongly with Gleason Pattern and Are Stronger Predictors of Prostate ADC Changes than Cellularity Metrics. Radiology 2015; 277: 751-762 . doi:10.1148/radiol.2015142414
  • 26 Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247-254 . doi:10.1006/jmrb.1994.1037
  • 27 Gholizadeh N, Greer PB, Simpson J. et al Characterization of prostate cancer using diffusion tensor imaging: A new perspective. Eur J Radiol 2019; 110: 112-120 . doi:10.1016/j.ejrad.2018.11.026
  • 28 Le Bihan D, Breton E, Lallemand D. et al Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505 . doi:10.1148/radiology.168.2.3393671
  • 29 Zhang YD, Wang Q, Wu CJ. et al The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol 2015; 25: 994-1004 . doi:10.1007/s00330-014-3511-4
  • 30 Iima M, Le Bihan D. Clinical Intravoxel Incoherent Motion and Diffusion MR Imaging: Past, Present, and Future. Radiology 2016; 278: 13-32 . doi:10.1148/radiol.2015150244
  • 31 Pang Y, Turkbey B, Bernardo M. et al Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 2013; 69: 553-562 . doi:10.1002/mrm.24277
  • 32 Dopfert J, Lemke A, Weidner A. et al Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011; 29: 1053-1058 . doi:10.1016/j.mri.2011.06.001
  • 33 Niendorf T, Dijkhuizen RM, Norris DG. et al Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857 . doi:10.1002/mrm.1910360607
  • 34 Assaf Y, Cohen Y. Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson 1998; 131: 69-85 . doi:10.1006/jmre.1997.1313
  • 35 Mulkern RV, Gudbjartsson H, Westin CF. et al Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51-62 . doi:10.1002/(sici)1099-1492(199902)12:1<51::aid-nbm546>3.0.co;2-e
  • 36 Bourne RM, Panagiotaki E, Bongers A. et al Information theoretic ranking of four models of diffusion attenuation in fresh and fixed prostate tissue ex vivo. Magn Reson Med 2014; 72: 1418-1426 . doi:10.1002/mrm.25032
  • 37 Jensen JH, Helpern JA, Ramani A. et al Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440 . doi:10.1002/mrm.20508
  • 38 Maas MC, Futterer JJ, Scheenen TW. Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Invest Radiol 2013; 48: 779-786 . doi:10.1097/RLI.0b013e31829705bb
  • 39 Bittencourt LK, Attenberger UI, Lima D. et al Feasibility study of computed vs measured high b-value (1400 s/mm(2)) diffusion-weighted MR images of the prostate. World J Radiol 2014; 6: 374-380 . doi:10.4329/wjr.v6.i6.374
  • 40 Berufsverband Deutscher Radiologen e. V., Deutsche Röntgengesellschaft – Gesellschaft für medizinische Radiologie e.V. Multiparametrische MRT-Untersuchung der Prostata (mpMR-Prostatografie) – Technische Vorgaben. 2018 http://www.radiologenverband.de/inhalte/2018-10-03/23/multiparametrische-mrt-untersuchung-der-prostata-mpmr-prostatografie#inhalte/2018-10-03/23/multiparametrische-mrt-untersuchung-der-prostata-mpmr-prostatografie ; Stand 1st of April 2020
  • 41 Shafiee MJ, Haider SA, Wong A. et al Apparent Ultra-High b-Value Diffusion-Weighted Image Reconstruction via Hidden Conditional Random Fields. IEEE Trans Med Imaging 2015; 34: 1111-1124 . doi:10.1109/TMI.2014.2376781
  • 42 Panagiotaki E, Schneider T, Siow B. et al Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 2012; 59: 2241-2254 . doi:10.1016/j.neuroimage.2011.09.081
  • 43 Panagiotaki E, Walker-Samuel S, Siow B. et al Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res 2014; 74: 1902-1912 . doi:10.1158/0008-5472.CAN-13-2511
  • 44 Panagiotaki E, Chan RW, Dikaios N. et al Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging. Invest Radiol 2015; 50: 218-227 . doi:10.1097/RLI.0000000000000115
  • 45 Panagiotaki E, Andrada I, Johnston E. et al Optimised VERDICT MRI protocol for prostate cancer characterisation. In, 23rd Annual Meeting of the International Society for Magnetic Resonance in Medicine. Toronto, Ontario, Canada: 2015 2872.
  • 46 White NS, Leergaard TB, D'Arceuil H. et al Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation. Hum Brain Mapp 2013; 34: 327-346 . doi:10.1002/hbm.21454
  • 47 Tournier JD, Calamante F, Gadian DG. et al Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 2004; 23: 1176-1185 . doi:10.1016/j.neuroimage.2004.07.037
  • 48 White NS, McDonald CR, Farid N. et al Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using “restriction spectrum imaging”: quantitative comparison with high B-value DWI and ADC. AJNR Am J Neuroradiol 2013; 34: 958-964, S951 . doi:10.3174/ajnr.A3327
  • 49 Brunsing RL, Schenker-Ahmed NM, White NS. et al Restriction spectrum imaging: An evolving imaging biomarker in prostate MRI. J Magn Reson Imaging 2017; 45: 323-336 . doi:10.1002/jmri.25419
  • 50 Felker ER, Raman SS, Shakeri S. et al Utility of Restriction Spectrum Imaging Among Men Undergoing First-Time Biopsy for Suspected Prostate Cancer. Am J Roentgenol 2019; 213: 365-370 . doi:10.2214/AJR.18.20836
  • 51 van Gelderen P, DesPres D, van Zijl PC. et al Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle. J Magn Reson B 1994; 103: 255-260 . doi:10.1006/jmrb.1994.1038
  • 52 Wichtmann BD, Huang S, Fan Q. et al Linear Multi-scale Modeling of diffusion MRI data: A framework for characterization of orientational structures across length scales. In, 24th Annual Meeting of the International Society for Magnetic Resonance in Medicine. Singapore, Singapore: 2016 5142.
  • 53 Wichtmann BD, Nummenmaa A, Fan Q. et al Investigating microstructural signatures for low-grade gliomas using Linear Multi-scale Modeling of diffusion MRI data. In, 25th Annual Meeting of the International Society for Magnetic Resonance in Medicine. Honolulu, HI, USA: 2017 3362.
  • 54 Liang S, Panagiotaki E, Bongers A. et al Information-based ranking of 10 compartment models of diffusion-weighted signal attenuation in fixed prostate tissue. NMR Biomed 2016; 29: 660-671 . doi:10.1002/nbm.3510