Planta Med 2021; 87(12/13): 989-997
DOI: 10.1055/a-1270-7761
Natural Product Chemistry and Analytical Studies
Original Papers

Studies on Bignoniaceae: Newbouldiosides D – F, Minor Phenylethanoid Glycosides from Newbouldia laevis, and New Flavonoids from Markhamia zanzibarica and Spathodea campanulata [ # ]

Herbert Kolodziej
Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Biology, Berlin, Germany
› Institutsangaben

Abstract

Continued examination of the stem bark of Newbouldia laevis afforded three minor phenylethanoid glycosides, designated as newbouldiosides D – F. Their structures were elucidated by spectroscopic methods as β-(3,4-dihydroxyphenyl)ethyl 5-O-syringoyl-β-D-apiofuranosyloxy-(1 → 2)-O-[α-L-rhamnopyranosyl-(1 → 3)]-6-O-E-sinapoyl-β-D-glucopyranoside, β-(3,4-dihydroxyphenyl)ethyl β-D-apiofuranosyloxy-(1 → 2)-O-[α-L-rhamnopyranosyl-(1 → 3)]-6-O-E-sinapoyl-β-D-glucopyranoside, and β-(3,4-dihydroxyphenyl)ethyl β-D-apiofuranosyloxy-(1 → 2)-O-α-L-rhamnopyranosyl-(1 → 2)-6-O-E-sinapoyl-β-D-glucopyranoside, respectively. These metabolites are the first members possessing a sinapoyl structural element. In addition, the series of naturally occurring flavonoids is extended by the identification of 3′,4′,5,7-tetrahydroxy-5′-methoxyflavanone and apigenin-5-O-α-L-rhamnopyranosyl-7-O-β-D-glucopyranoside obtained from leaf extracts of Markhamia zanzibarica and aromadendrin-7-O-(2″-O-formyl)-β-D-glucopyranoside isolated from Spathodea campanulata. The latter compound is the first example of a flavonoid possessing a formylated glucosyl moiety.

# Dedicated to Professor Arnold Vlietinck on the occasion of his 80th birthday.




Publikationsverlauf

Eingereicht: 06. Juli 2020

Angenommen nach Revision: 15. September 2020

Artikel online veröffentlicht:
06. November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Olmsteadt RG, Zjhra ML, Lohmann LG, Grose SO, Eckart AJ. A molecular phylogeny and classification of Bignoniaceae. Am J Bot 2009; 96: 1731-1743
  • 2 Gafner S, Wolfender JL, Nianga M, Stoeckli-Evans H, Hostettmann K. Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots. Phytochemistry 1996; 42: 1315-1320
  • 3 Gafner S, Wolfender JL, Nianga M, Hostettmann K. Phenylpropanoid glycosides from Newbouldia laevis roots. Phytochemistry 1997; 44: 687-690
  • 4 Kernan MR, Amarquaye A, Chen JL, Chan J, Sesin DF, Parkinson N, Ye Z, Barrett M, Bales C, Stoddart CA, Sloan B, Blanc P, Limbach C, Mrisho S, Rozhon EJ. Antiviral phenylpropanoid glycosides from the medicinal plant Markhamia lutea . J Nat Prod 1998; 61: 564-570
  • 5 Kanchanapoom T, Kasai R, Yamasaki K. Phenolic glycosides from Markhamia stipulata . Phytochemistry 2002; 59: 557-563
  • 6 Adesanya SA, Nia R, Fontaine C, Pais M. Pyrazole alkaloids from Newbouldia laevis . Phytochemistry 1994; 35: 1053-1055
  • 7 Aladesanmi AJ, Nia R, Nahrstedt A. New pyrazole alkaloids from the root bark of Newbouldia laevis . Planta Med 1998; 64: 90-91
  • 8 Khan MR, Mlungwana SM. γ-Sitosterol, a cytotoxic sterol from Markhamia zanzibarica and Kigelia africana . Fitoterapia 1999; 70: 96-97
  • 9 El-Hela AA. Phenolics from Spathodea acuminata (P. Beauvais) leaves. Al-Azhar J Pharm Sci 2001; 27: 152-162
  • 10 El-Hela AA. A new iridoid glucoside from Spathodea acuminata (P. Beauvais) leaves. Al-Azhar J Pharm Sci 2001; 27: 115-120
  • 11 Ngouela S, Tsamo E, Sondengam BL. Extractives from Bignoniaceae. Constituents of the stembark of Spathodea campanulata . Planta Med 1988; 54: 476
  • 12 Ngouela S, Nyasse B, Tsamo E, Sondengam BL, Conolly JD. Spathodic acid: a triterpene acid from the stem bark of Spathodea campanulata . Phytochemistry 1990; 29: 3559-3561
  • 13 Burkill HM. The useful Plants of West tropical Africa. 2nd edition, Vol. 1. Kew, London: Royal Botanic Gardens; 1985: 440-446
  • 14 Azuine MA. Cancer and Ethnobotany of Nigeria. Aachen: Shaker; 1999: 115-116
  • 15 Gormann R, Kaloga M, Li XC, Ferreira D, Bergenthal D, Kolodziej H. Furanonaphthoquinones, atraric acid and a benzofuran from the stembarks of Newbouldia laevis . Phytochemistry 2003; 64: 583-587
  • 16 Gormann R, Kaloga M, Ferreira D, Marais JPJ, Kolodziej H. Newbouldiosides A–C, phenylethanoid glycosides from the stem bark of Newbouldia laevis . Phytochemistry 2006; 67: 805-811
  • 17 Gormann R, Schreiber L, Kolodziej H. Cuticular wax profiles of leaves of some traditionally used African Bignoniaceae. Z Naturforsch 2004; 59c: 631-635
  • 18 Zou JM, Wang LS, Niu XM, Sun HD, Guo YJ. Phenylethanoid glycosides from Picria felterrae Lour. J Integr Plant Biol 2005; 47: 632-636
  • 19 Sugiyama M, Kikuchi M. Phenylethanoid glycosides from Osmanthus asiaticus . Phytochemistry 1995; 32: 1553-1555
  • 20 Xue Z, Yang B. Phenylethanoid glycosides: Research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 2016; 21: 991
  • 21 Kyriakopoulou I, Magiatis P, Skaltsounis AL, Aligiaris A, Harvala C. Samioside, a new phenylethanoid glycoside with free-radical scavenging and antimicrobial activities from Phlomis samia . J Nat Prod 2001; 64: 1095-1097
  • 22 Harborne JB. Comparative biochemistry of the flavonoids – VI.: Flavonoid patterns in the Bignoniaceae and the Gesneriaceae. Phytochemistry 1967; 6: 1643-1651
  • 23 Hegnauer R. Chemotaxonomie der Pflanzen, Vol. VIII. Basel: Birkhäuser; 1989: 128-138
  • 24 Blatt CTT, Santos M, Salatino A. Flavonoids of Bignoniaceae from the “cerrado” and their possible taxonomic significance. Plant Syst Evol 1998; 210: 289-292
  • 25 Mansoor A, Neeru J, Mohammad K, Mohammad I. Isolation and characterization of two new flavanone disaccharides from the leaves of Tecoma grandiflora, Bignoniaceae. J Chem Res Synop 1991; 5: 10
  • 26 Foo LY. Configuration and conformation of dihydroflavonols from Acacia melanoxylon . Phytochemistry 1987; 26: 813-817
  • 27 Slimestad R, Andersen ØM, Francis GW. Ampelopsin 7-glucoside and other dihydroflavonol 7-glucosides from needles of Picea abies . Phytochemistry 1994; 35: 550-552
  • 28 Judelicato JM, Stewart BA, Engel GL. Formylation of glucose by cefamandole nafate at alkaline pH. J Pharm Sci 1980; 69: 1183-1188
  • 29 Foo LY, Karchesy JJ. Polyphenolic glycosides from Douglas fir inner bark. Phytochemistry 1989; 28: 1237-1240
  • 30 Baderschneider B, Winterhalter P. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from riesling wine and screening for antioxidant activity. J Agric Food Chem 2001; 49: 2788-2798
  • 31 Von Poser GL, Schripsema J, Henriques AT, Rosendahl J. The distribution of iridoids in Bignoniaceae. Biochem Syst Ecol 2000; 28: 351-366
  • 32 Guiso M. Pondraneoside, a new iridoid glucoside from Pondranea ricasoliana . J Nat Prod 1982; 45: 462-465
  • 33 Guiso M, Marra C, Piccioni F, Nicoletti M. Iridoid and phenylglucoside from Tecoma capensis . Phytochemistry 1997; 45: 193-194
  • 34 Bianco A, Passacantilli P, Righi G. New iridoid glycosides from Tecoma capensis . J Nat Prod 1983; 46: 314-319