Orthopädie und Unfallchirurgie up2date 2021; 16(04): 335-356
DOI: 10.1055/a-1250-3569
Grundlagen

Knorpelersatzverfahren und Regeneration am Knie- und Hüftgelenk

Svea Faber
,
Philipp Niemeyer
,
Stefan Fickert

Die operative Therapie von Knorpelschäden am Kniegelenk hat sich in den letzten Jahren von vorsichtigen Anfängen mit innovativen Therapieansätzen zu einem festen und etablierten Baustein der gelenkerhaltenden Therapie entwickelt. Hingegen hat sich am Hüftgelenk erst in den letzten 10 Jahren, basierend auf einem erweiterten Verständnis grundlegender mechanischer Pathomechanismen, die gelenkerhaltende Hüftchirurgie und insbesondere die Knorpeltherapie etabliert. Der Beitrag stellt die zur Verfügung stehenden Techniken vor.

Kernaussagen
  • Die Indikation zu knorpelregenerativen Verfahren wird von verschiedenen Faktoren beeinflusst: Defektstadium und -lokalisation, Anzahl der Defekte, Kontraindikationen wie z. B. schwere Arthrose und rheumatologische Erkrankungen.

  • Die Wahl des Verfahrens wiederum hängt vor allem von der Defektgröße, aber auch von der Defektmorphologie, dem Patientenalter, den zugrunde liegenden Ursachen und dem sportlichen Anspruch ab.

  • Die Mikrofrakturierung wird immer noch eingesetzt: bei fokalen Läsionen < 2,5 cm2 und bei Patienten mit niedrigerem funktionellem Anspruch. Die Mikrofrakturierung mit Matrix oder auch Matrix-augmented Bone Marrow Stimulation (mBMS) stellt die Weiterentwicklung des Verfahrens dar.

  • Die autologe Chondrozytentransplantation (ACT) ist der Goldstandard für die Behandlung von fokalen Knorpelschäden > 2,5 cm2 am Kniegelenk und > 2 cm2 am Hüftgelenk. Als zweizeitiges Verfahren folgt auf die arthroskopische Entnahme der Knorpelzellen die In-vitro-Expansion und anschließend die Applikation der Zellen.

  • Die osteochondrale Transplantation (OCT) stellt für kleine osteochondrale Defekte (< 3 cm2) insbesondere an den Femurkondylen, die mit möglichst einem Knochenzylinder zu behandeln sind, eine zuverlässige Therapieoption dar. Aufgrund der Limitationen in der Indikation und der nicht zu vernachlässigenden Entnahmemorbidität hat sie in den letzten Jahren jedoch an Bedeutung verloren.

  • Nur ein geringer Anteil der Knorpelschäden kann als echter traumatischer Knorpelschaden eingestuft werden. Häufig liegt ursächlich eine Fehlstellung und/oder eine strukturelle Schwächung des Gelenks vor. Im Sinne des Prinzips der Behandlung der Ursache und nicht nur des Symptoms besteht ein steigender Bedarf an Begleitoperationen.

  • Die Rehabilitation nach einer knorpelregenerativen Behandlung ist für das Behandlungsergebnis essenziell, wobei die Empfehlungen zur Rehabilitation noch auf niedrigerer Evidenz beruhen.

  • Die Nachbehandlung gliedert sich in die 3 Phasen Proliferationsphase (Woche 0 – 6), Übergangsphase (Woche 6 – 12) und Remodellierungsphase (Woche 12 – 26). Die Dauer bis zur Rückkehr in den Leistungssport kann aufgrund der langen Remodellierungsphase bis zu 1 Jahr betragen.



Publication History

Article published online:
11 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Deutsche Gesellschaft für Orthopädie und Unfallchirurgie – DGOU. KnorpelRegister DGOU. Im Internet (Stand: 26.01.2021): https://www.knorpelregister-dgou.de
  • 2 Heir S, Nerhus TK, Røtterud JH. et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: A comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 2010; 38: 231-237
  • 3 Schinhan M, Gruber M, Vavken P. et al. Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 2012; 30: 214-220
  • 4 Carnes J, Stannus O, Cicuttini F. et al. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthritis Cartilage 2012; 20: 1541-1547
  • 5 Jungmann PM, Li X, Nardo L. et al. Do cartilage repair procedures prevent degenerative meniscus changes?: longitudinal T1ρ and morphological evaluation with 3.0-T MRI. Am J Sports Med 2012; 40: 2700-2708
  • 6 Jungmann PM, Gersing AS, Baumann F. et al. Cartilage repair surgery prevents progression of knee degeneration. Knee Surg Sport Traumatol Arthrosc 2018; 27: 3001-3013
  • 7 Horga LM, Hirschmann AC, Henckel J. et al. Prevalence of abnormal findings in 230 knees of asymptomatic adults using 3.0 T MRI. Skeletal Radiol 2020; 49: 1099-1107
  • 8 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee 2007; 14: 177-182
  • 9 Kraus VB, Blanco FJ, Englund M. et al. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 2015; 23: 1233-1241
  • 10 Faber S, Zinser W, Angele P. et al. Does gender influence outcome in cartilage repair surgery? An analysis of 4,968 consecutive patients from the German Cartilage Registry (KnorpelRegister DGOU). Cartilage 2020;
  • 11 Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 2010; 18: 419-433
  • 12 Niemeyer P, Andereya S, Angele P. et al. Stellenwert der autologen Chondrozytentransplantation (ACT) in der Behandlung von Knorpelschäden des Kniegelenks – Empfehlungen der AG Klinische Geweberegeneration der DGOU. Z Orthop Unfallchir 2013; 151: 38-47
  • 13 Niemeyer P, Becher C, Brucker PU. et al. Significance of matrix-augmented bone marrow stimulation for treatment of cartilage defects of the knee: a consensus statement of the DGOU Working Group on Tissue Regeneration. Z Orthop Unfallchir 2018; 156: 513-532
  • 14 Spahn G, Fritz J, Albrecht D. et al. Characteristics and associated factors of Klee cartilage lesions: preliminary baseline-data of more than 1000 patients from the German cartilage registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 2016; 136: 805-810
  • 15 Niethammer TR, Holzgruber M, Gülecyüz MF. et al. Matrix based autologous chondrocyte implantation in children and adolescents: a match paired analysis in a follow-up over three years post-operation. Int Orthop 2017; 41: 343-350
  • 16 Hoburg A, Löer I, Körsmeier K. et al. Matrix-Associated Autologous Chondrocyte Implantation Is an Effective Treatment at Midterm Follow-up in Adolescents and Young Adults. Orthop J Sports Med 2019; 7: 2325967119841077
  • 17 Jungmann PM, Salzmann GM, Schmal H. et al. Autologous chondrocyte implantation for treatment of cartilage defects of the knee: What predicts the need for reintervention?. Am J Sports Med 2012; 40: 58-67
  • 18 Filardo G, Kon E, Andriolo L. et al. Does patient sex influence cartilage surgery outcome?: Analysis of results at 5-year follow-up in a large cohort of patients treated with matrix-assisted autologous chondrocyte transplantation. Am J Sports Med 2013; 41: 1827-1834
  • 19 Dugard MN, Kuiper JH, Parker J. et al. Development of a Tool to Predict Outcome of Autologous Chondrocyte Implantation. Cartilage 2017; 8: 119-130
  • 20 Steadman JR, Rodkey WG, Briggs KK. et al. The microfracture technique to treat full thickness articular cartilage defects of the knee. Orthopäde 1999; 28: 26-32
  • 21 Kon E, Filardo G, Brittberg M. et al. A multilayer biomaterial for osteochondral regeneration shows superiority vs. microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surg Sports Traumatol Arthrosc 2018; 26: 2704-2715
  • 22 Méthot S, Changoor A, Tran-Khanh N. et al. Osteochondral Biopsy Analysis Demonstrates That BST-CarGel Treatment Improves Structural and Cellular Characteristics of Cartilage Repair Tissue Compared With Microfracture. Cartilage 2016; 7: 16-28
  • 23 Volz M, Schaumburger J, Frick H. et al. A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at five years. Int Orthop 2017; 41: 797-804
  • 24 Frisbie DD, Morisset S, Ho CP. et al. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 2006; 34: 1824-1831
  • 25 Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 2014; 22: 1986-1996
  • 26 Orth P, Gao L, Madry H. Microfracture for Cartilage Repair in the Knee: a systematic Review of the contemporary Literature. Berlin, Heidelberg: Springer; 2020
  • 27 Saris DBF, Vanlauwe J, Victor J. et al. Characterized Chondrocyte Implantation Results in Better Structural Repair When Treating Symptomatic Cartilage Defects of the Knee in a Randomized Controlled Trial versus Microfracture. Am J Sports Med 2008; 36: 235-246
  • 28 Brittberg M, Recker D, Ilgenfritz J. et al. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Five-Year Follow-up of a Prospective Randomized Trial. Am J Sports Med 2018; 46: 1343-1351
  • 29 Na Y, Shi Y, Liu W. et al. Is implantation of autologous chondrocytes superior to microfracture for articular-cartilage defects of the knee? A systematic review of 5-year follow-up data. Int J Surg 2019; 68: 56-62
  • 30 Bert JM. Abandoning microfracture of the knee: has the time come?. Arthroscopy 2015; 31: 501-505
  • 31 Biant LC, McNicholas MJ, Sprowson AP. et al. The surgical management of symptomatic articular cartilage defects of the knee: Consensus statements from United Kingdom knee surgeons. Knee 2015; 22: 446-449
  • 32 Niemeyer P, Albrecht D, Andereya S. et al. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: A guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 2016; 23: 426-435
  • 33 Steinwachs MR, Engebretsen L, Brophy RH. Scientific evidence base for cartilage injury and repair in the athlete. Cartilage 2011; 3: 11S-17S
  • 34 Theodoropoulos J, Dwyer T, Whelan D. et al. Microfracture for knee chondral defects: A survey of surgical practice among Canadian orthopedic surgeons. Knee Surg Sports Traumatol Arthrosc 2012; 20: 2430-2437
  • 35 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture: Findings at five years. J Bone Joint Surg Am 2007; 89: 2105-2112
  • 36 Pot MW, Gonzales VK, Buma P. et al. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ 2016; 4: e2243
  • 37 Niemeyer P, Becher C, Brucker P. et al. Stellenwert der matrixaugmentierten Knochenmarkstimulation in der Behandlung von Knorpelschäden des Kniegelenks: Konsensusempfehlungen der AG Klinische Geweberegeneration der DGOU. Z Orthop Unfall 2018; 156: 513-532
  • 38 Brittberg M, Lindahl A, Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
  • 39 Roberts S, Hollander AP, Caterson B. et al. Matrix turnover in human cartilage repair tissue in autologous chondrocyte implantation. Arthritis Rheum 2001; 44: 2586-2598
  • 40 Harris JD, Siston RA, Brophy RH. et al. Failures, re-operations, and complications after autologous chondrocyte implantation – a systematic review. Osteoarthritis Cartilage 2011; 19: 779-791
  • 41 Campbell AB, Pineda M, Harris JD. et al. Return to Sport after Articular Cartilage Repair in Athletesʼ Knees: A Systematic Review. Arthroscopy 2016; 32: 651-668.e1
  • 42 Saris DBF, Vanlauwe J, Victor J. et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37: 10S-19S
  • 43 Niemeyer P, Laute V, Zinser W. et al. A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects of the knee. Orthop J Sports Med 2019; 7: 2325967119854442
  • 44 Jones KJ, Kelley BV, Arshi A. et al. Comparative effectiveness of cartilage repair with respect to the minimal clinically important difference. Am J Sports Med 2019; 47: 3284-3293
  • 45 Niemeyer P, Laute V, Zinser W. et al. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg Sports Traumatol Arthrosc 2020; 28: 1130-1143
  • 46 Becher C, Laute V, Fickert S. et al. Safety of three different product doses in autologous chondrocyte implantation: Results of a prospective, randomised, controlled trial. J Orthop Surg Res 2017; 12
  • 47 Niemeyer P, Laute V, John T. et al. The Effect of Cell Dose on the Early Magnetic Resonance Morphological Outcomes of Autologous Cell Implantation for Articular Cartilage Defects in the Knee. Am J Sports Med 2016; 44: 2005-2014
  • 48 Ogura T, Mosier BA, Bryant T. et al. A 20-Year Follow-up after First-Generation Autologous Chondrocyte Implantation. Am J Sports Med 2017; 45: 2751-2761
  • 49 Solheim E, Hegna J, Øyen J. et al. Results at 10 to 14 years after osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee. Knee 2013; 20: 287-290
  • 50 Mehl J, Südkamp NP, Niemeyer P. Knorpelschäden des patellofemoralen Gelenkabschnitts. Diagnostik und Therapie. Arthroskopie 2015; 28: 213-219
  • 51 Mithoefer K, Hambly K, Della Villa S. et al. Return to Sports Participation after Articular Cartilage Repair in the Knee: Scientific Evidence. Am J Sports Med 2009; 37: 167S-176S
  • 52 Kish G. et al. Hangody L et al. Bentley G. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee (multiple letters). J Bone Joint Surg Br 2004; 86: 619-620
  • 53 Faber S, Zellner J, Angele P. et al. Decision making for concomitant high tibial osteotomy (HTO) in cartilage repair patients based on a nationwide cohort study of 4968 patients. Arch Orthop Trauma Surg 2020; 140: 1437-1444
  • 54 Saris D, Price A, Widuchowski W. et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: Two-year follow-up of a prospective randomized trial. Am J Sports Med 2014; 42: 1384-1394
  • 55 Bode G, Schmal H, Pestka JM. et al. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5. Arch Orthop Trauma Surg 2013; 133: 43-49
  • 56 Minas T, Ogura T, Headrick J. et al. Autologous chondrocyte implantation “sandwich” technique compared with autologous bone grafting for deep osteochondral lesions in the knee. Am J Sports Med 2018; 46: 322-332
  • 57 Abramson DI, Chu LS, Tuck jr. S. et al. Effect of tissue temperatures and blood flow on motor nerve conduction velocity. JAMA 1966; 198: 1082-1088
  • 58 Morsi E. Continuous-flow cold therapy after total knee arthroplasty. J Arthroplasty 2002; 17: 718-722
  • 59 Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 1994; 2: 192-201
  • 60 Hirschmüller A, Baur H, Braun S. et al. Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med 2011; 39: 2686-2696
  • 61 Riegger-Krugh CL, McCarty EC, Robinson MS. et al. Autologous chondrocyte implantation: Current surgery and rehabilitation. Med Sci Sports Exerc 2008; 40: 206-214
  • 62 Frank RM, McCormick F, Rosas S. et al. Reoperation rates after cartilage restoration procedures in the knee: analysis of a large US commercial database. Am J Orthop (Belle Mead NJ) 2018; 47
  • 63 Pestka JM, Luu NH, Südkamp NP. et al. revision surgery after cartilage repair: data from the German cartilage registry (KnorpelRegister DGOU). Orthop J Sports Med 2018; 6: 2325967117752623
  • 64 Krych AJ, Hevesi M, Desai VS. et al. Learning from failure in cartilage repair surgery: an analysis of the mode of failure of primary procedures in consecutive cases at a tertiary referral center. Orthop J Sports Med 2018; 6: 232596711877304
  • 65 Pestka JM, Bode G, Salzmann G. et al. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 2012; 40: 325-331
  • 66 Niemeyer P, Pestka JM, Kreuz PC. et al. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 2008; 36: 2091-2099
  • 67 Kreuz PC, Steinwachs M, Erggelet C. et al. Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee. Osteoarthritis Cartilage 2007; 15: 1339-1347
  • 68 Claßen T, Körsmeier K, Kamminga M. et al. Is early treatment of cam-type femoroacetabular impingement the key to avoiding associated full thickness isolated chondral defects?. Knee Surg Sports Traumatol Arthrosc 2016; 24: 2332-2337
  • 69 Matziolis G. AWMF-Leitlinie S2k Coxarthrose 2019. Im Internet (Stand: 26.01.2021): https://www.awmf.org/uploads/tx_szleitlinien/033-001l_S2k_Koxarthrose_2019-07_1.pdf
  • 70 Griffin DW, Kinnard MJ, Formby PM. et al. Outcomes of Hip Arthroscopy in the Older Adult: A Systematic Review of the Literature. Am J Sports Med 2017; 45: 1928-1936
  • 71 Rodriguez-Fontan F, Payne KA, Chahla J. et al. Viability and Tissue Quality of Cartilage Flaps From Patients With Femoroacetabular Hip Impingement: A Matched-Control Comparison. Orthop J Sports Med 2017; 5: 2325967117723608
  • 72 Haefeli PC, Tannast M, Beck M. et al. Subchondral drilling for chondral flaps reduces the risk of total hip arthroplasty in femoroacetabular impingement surgery at minimum five years follow-up. Hip Int 2019; 29: 191-197
  • 73 Tannast M, Hanke MS, Zheng G. et al. What are the radiographic reference values for acetabular under- and overcoverage?. Clin Orthop Relat Res 2015; 473: 1234-1246
  • 74 Larson CM, Giveans MR, Stone RM. Arthroscopic debridement versus refixation of the acetabular labrumassociated with femoroacetabular impingement: mean 3.5-year follow-up. Am J Sports Med 2012; 40: 1015-1021
  • 75 Duncan CP, Haddad FS. The Unified Classification System (UCS): improving our understanding of periprosthetic fractures. Bone Joint J 2014; 96-B: 713-716