Tierarztl Prax Ausg K Kleintiere Heimtiere 2020; 48(04): 250-258
DOI: 10.1055/a-1213-4574
Original Article

Distraction index and Norberg angle to distinguish dysplastic and non-dysplastic hips based on FCI score

Distraktionsindex und Norberg-Winkel zur Unterscheidung dysplastischer und nicht dysplastischer Hüftgelenke basierend auf der FCI-Beurteilung
Julius Klever
Clinic of Small Animal Surgery and Reproduction, Center of Clinical Veterinary Medicine, LMU Munich, Germany
,
Andreas Brühschwein
Clinic of Small Animal Surgery and Reproduction, Center of Clinical Veterinary Medicine, LMU Munich, Germany
,
Andrea Meyer-Lindenberg
Clinic of Small Animal Surgery and Reproduction, Center of Clinical Veterinary Medicine, LMU Munich, Germany
› Author Affiliations

Abstract

Objective Radiographic hip scoring according to the Fédération Cynologique Internationale (FCI) and PennHIP (Pennsylvania Hip Improvement Program) method was performed with the purpose to compare the PennHIP and FCI results as well as coxofemoral joint laxity by correlation of Norberg angle and distraction index measurements.

Materials and methods A total of 167 dogs of various breeds presented for official screening examination in a veterinary teaching hospital in Germany were included. Using receiver operating characteristic analysis, the best Norberg angle and distraction index cut-off values to distinguish between dysplastic and non-dysplastic groups based on FCI grades and to distinguish between lax and tight hip joints according to the PennHIP proposal were calculated.

Results More than one third (38.2 %) of dogs that passed the breeding criterions according to FCI (grades A and B) were in the half of the population with lax hip joints and should not be used for breeding according to the PennHIP proposal. A cut-off value for the distraction index of 0.44 with sensitivity of 82.7 % and specificity of 84.2 % was superior to the best cut-off value for the Norberg angle at 101.8° with sensitivity of 82.7 % and specificity of 71.9 % to discriminate between non-dysplastic joints (A, B) and dysplastic joints (C, D, E).

Conclusions and clinical relevance Our results show a limited impact of laxity on the FCI grading. Breeding selection processes that are based on the FCI method could profit by an additional and complementary use of the distraction index.

Zusammenfassung

Gegenstand und Ziel Ziel der Studie war, die Ergebnisse der Röntgenuntersuchung auf Hüftgelenkdysplasie gemäß Fédération Cynologique Internationale (FCI) und PennHIP-Methode (Pennsylvania Hip Improvement Program) sowie den Einfluss der Hüftgelenklaxizität durch Korrelation von Norberg-Winkel und Distraktionsindex zu vergleichen.

Material and Methoden Die Untersuchung umfasste 167 Hunde verschiedener Rassen, die zur offiziellen Zuchtuntersuchung an einer Universitätstierklinik in Deutschland vorgestellt wurden. Mittels ROC-Analyse wurden Grenzwerte für Norberg-Winkel und Distraktionsindex zur Unterscheidung zwischen dysplastischen und nicht dysplastischen Hüftgelenken basierend auf den Ergebnissen der FCI-Methode sowie zur Unterscheidung zwischen lockeren und straffen Hüftgelenken gemäß den PennHIP-Empfehlungen berechnet.

Ergebnisse Mehr als ein Drittel (38,2 %) der Hunde, die die Zuchtkriterien nach FCI (Grad A und B) erfüllten, gehörten zur Hälfte der Population mit lockeren Hüftgelenken und sollten gemäß PennHIP-Empfehlungen nicht zur Zucht eingesetzt werden. Der Grenzwert von 0,44 für den Distraktionsindex war mit einer Sensitivität von 82,7 % und einer Spezifität von 84,21 % dem Grenzwert von 101,8° für den Norberg-Winkel mit einer Sensitivität von 82,7 % und einer Spezifität von 71,9 % zur Unterscheidung zwischen nicht dysplastischen Gelenken (A, B) und dysplastischen Gelenken (C, D, E) nach FCI überlegen.

Schlussfolgerungen und klinische Relevanz Unsere Ergebnisse zeigen einen limitierten Einfluss der Gelenklaxizität auf die Bewertung nach FCI. Zuchtauswahlverfahren, die auf der FCI-Methode basieren, könnten durch eine ergänzende Nutzung des Distraktionsindex profitieren.



Publication History

Received: 03 February 2020

Accepted: 08 June 2020

Article published online:
21 August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Johnson J, Austin C, Breur G. Incidence of canine appendicular musculoskeletal disorders in 16 veterinary teaching hospitals from 1980 through 1989. Vet Comp Orthop Traumatol 1994; 7: 56-69 doi:10.1055/s-0038–1633097
  • 2 Leppänen M, Saloniemi H. Controlling canine hip dysplasia in Finland. Prev Vet Med 1999; 42: 121-131 doi:10.1016/S0167–5877(99)00059–8
  • 3 Leighton E. Genetics of canine hip dysplasia. J Am Vet Med Assoc 1997; 210: 1474-1479
  • 4 Powers MY, Karbe GT, Gregor TP. et al. Evaluation of the relationship between Orthopedic Foundation for Animals’ hip joint scores and PennHIP distraction index values in dogs. J Am Vet Med Assoc 2010; 237: 532-541 DOI: 10.2460/javma.237.5.532.
  • 5 Zhang Z, Zhu L, Sandler J. et al. Estimation of heritabilities, genetic correlations, and breeding values of four traits that collectively define hip dysplasia in dogs. Am J Vet Res 2009; 70: 483-492 DOI: 10.2460/ajvr.70.4.483.
  • 6 Freeman B, Evans VB, McEwan NR. Canine hip dysplasia in Irish water spaniels: two decades of gradual improvement. Vet Rec 2013; 173: 72-72 doi:10.1136/vr.101152
  • 7 Silvestre AM, Ginja MMD, Ferreira AJ. et al. Comparison of estimates of hip dysplasia genetic parameters in Estrela Mountain Dog using linear and threshold models. J Anim Sci 2007; 85: 1880-1884 DOI: 10.2527/jas.2007–0166.
  • 8 Verhoeven G, Fortrie RR, Van Ryssen B. et al. Worldwide Screening for Canine Hip Dysplasia: Where Are We Now?. Vet Surg 2012; 41: 10-19 DOI: 10.1111/j.1532–950X.2011.00929.x.
  • 9 Flückiger M. Scoring radiographs for canine Hip Dysplasia – The big three organisations in the world. Eur J Comp Anim Pract 2007; 17: 135-140
  • 10 Smith GK, Popovitch C, Gregor TP. Evaluation of risk factors for degenerative joint disease associated with hip dysplasia in dogs. J Am Vet Med Assoc 1995; 206: 642-647
  • 11 Smith GK, Biery DN, Gregor TP. New concepts of coxofemoral joint stability and the development of a clinical stress-radiographic method for quantitiating hip joint laxity in the dog. J Am Vet Med Assoc 1990; 196: 59-70
  • 12 Broeckx B, Vezzoni A, Bogaerts E. et al. Comparison of Three Methods to Quantify Laxity in the Canine Hip Joint. Vet Comp Orthop Traumatol 2018; 31: 23-29 DOI: 10.3415/VCOT17–05–0064.
  • 13 Flückiger M, Friedrich G, Binder H. A radiographic stress technique for evaluation of coxofemoral joint laxity in dogs. Vet Surg 1999; 28: 1-9 doi:10.1053/jvet.1999.0001
  • 14 Ogden DM, Scrivani PV, Dykes NL. et al. The S-Measurement in the Diagnosis of Canine Hip Dysplasia. Vet Surg 2012; 41 (01) 78-85 DOI: 10.1111/j.1532–950X.2011.00874.x.
  • 15 Smith GK, Lawler DF, Biery DN. et al. Chronology of Hip Dysplasia Development in a Cohort of 48 Labrador Retrievers Followed for Life. Vet Surg 2012; 41: 20-33 DOI: 10.1111/j.1532–950X.2011.00935.x.
  • 16 Corley E, Keller GG, Lattimer J. Reliability of early radiographic evaluations for canine hip dysplasia obtained from the standard ventrodorsal radiographic projection. J Am Vet Med Assoc 1997; 211: 1142-1146
  • 17 Jessen CD, Spurell FA. Radiographic detection of canine hip dysplasia in known age groups. In: Am Vet Med Assoc Symposium on Hip Dysplasia. 1972: 93-8
  • 18 Genevois J-P, Chanoit G, Carozzo C. et al. Influence of anaesthesia on canine hip dysplasia score. J Vet Med A Physiol Pathol Clin Med 2006; 53: 415-417 DOI: 10.1111/j.1439–0442.2006.00845.x.
  • 19 Klimt U. Zum Problem der ‘Lockeren Hüfte’ beim Hund Röntgenuntersuchungen zur lagerungsbedingten Verschieblichkeit des Femurkopfes bei der Diagnostik der Hüftgelenksdysplasie (HD) [Dissertation]. Gießen: Justus-Liebig-Universität; 1990
  • 20 Smith GK, Gregor TP, Rhodes W. et al. Coxofemoral joint laxity from distraction radiography and its contemporaneous and prospective correlation with laxity, subjective score, and evidence of degenerative joint disease from conventional hip-extended radiography in dogs. Am J Vet Res 1993; 54: 1021-1042
  • 21 Lust G, Williams AJ, Burton-Wurster NI. et al. Joint laxity and its association with hip dysplasia in Labrador retrievers. Am J Vet Res 1993; 54: 1990-1999
  • 22 Ohlerth S, Busato A, Rauch M. et al. Comparison of three distraction methods and conventional radiography for early diagnosis of canine hip dysplasia. J Small Anim Pract 2003; 44: 524-529 DOI: 10.1111/j.1748–5827.2003.tb00114.x.
  • 23 Ginja MMD, Gonzalo-Orden JM, Melo-Pinto P. et al. Early hip laxity examination in predicting moderate and severe hip dysplasia in Estrela mountain dog. J Small Anim Pract 2008; 49: 641-646 DOI: 10.1111/j.1748–5827.2008.00629.x.
  • 24 Culp WTN, Kapatkin AS, Gregor TP. et al. Evaluation of the Norberg angle threshold: a comparison of Norberg angle and distraction index as measures of coxofemoral degenerative joint disease susceptibility in seven breeds of dogs. Vet Surg 2006; 35: 453-459 DOI: 10.1111/j.1532–950X.2006.00174.x.
  • 25 Gaspar AR, Hayes G, Ginja C. et al. The Norberg angle is not an accurate predictor of canine hip conformation based on the distraction index and the dorsolateral subluxation score. Prev Vet Med 2016; 135: 47-52 DOI: 10.1016/j.prevetmed.2016.10.020.
  • 26 Tomlinson J, Johnson JC. Quantification of measurement of femoral head coverage and Norberg angle within and among four breeds of dogs. Am J Vet Res 2000; 61: 1492-1500 doi:10.2460/ajvr.2000.61.1492
  • 27 Heyman S, Smith GK. Biomechanical study of the effect of coxofemoral positioning on passive hip joint laxity in dogs. Am J Vet Res 1993; 54: 210-215
  • 28 Inoue M, Kwan N, Sugiura K. Estimating the life expectancy of companion dogs in Japan using pet cemetery data. J Vet Med Sci 2018; 80 (07) 1153-1158 doi:10.1292/jvms.17–0384
  • 29 Runge JJ, Kelly SP, Gregor TP. et al. Distraction index as a risk factor for osteoarthritis associated with hip dysplasia in four large dog breeds. J Small Anim Pract 2010; 51: 264-269 DOI: 10.1111/j.1748–5827.2010.00937.x.
  • 30 Comhaire FH, Schoonjans F. Canine hip dyslasia: the significance of the Norberg angle for healthy breeding. J Small Anim Pract 2011; 52: 536-542 doi:10.1111/j.1748–5827.2011.01105.x
  • 31 Witsberger TH, Villamil JA, Schultz LG. et al. Prevalence of and risk factors for hip dysplasia and cranial cruciate ligament deficiency in dogs. J Am Vet Med Assoc 2008; 232: 1818-1824 DOI: 10.2460/javma.232.12.1818.
  • 32 Hassinger K, Smith GK, Conzemius MG. et al. Effect of the oestrus cycle on coxofemoral joint laxity. Vet Comp Orthop Traumatol 1997; 10: 69-74 DOI: 10.1055/s-0038–1632573.
  • 33 Genevois JP, Cachon T, Fau D. et al. Canine hip dysplasia radiographic screening. Prevalence of rotation of the pelvis along its length axis in 7,012 conventional hip extended radiographs. Vet Comp Orthop Traumatol 2007; 20: 296-298 DOI: 10.1160/VCOT-07–01–0007.
  • 34 Marian A. The binomial distribution of right, mixed and left handedness. Q J Exp Psychol 1967; 19: 327-333 doi:10.1080/14640746708400109
  • 35 Tan Ü. Paw preferences in dogs. Int J Neurosci 1987; 32: 825-829 doi:10.3109/00207458709043336