Aktuelle Rheumatologie 2020; 45(05): 413-421
DOI: 10.1055/a-1202-0766
Übersichtsarbeit

Bildgebende Untersuchungen des neuronalen Schmerznetzwerks

Neuroimaging the Pain Network
Benjamin Mosch
1   Klinik für Psychosomatische Medizin und Psychotherapie, LWL Universitätsklinikum Bochum der Ruhr-Universität Bochum, Bochum
,
Verena Hagena
1   Klinik für Psychosomatische Medizin und Psychotherapie, LWL Universitätsklinikum Bochum der Ruhr-Universität Bochum, Bochum
,
1   Klinik für Psychosomatische Medizin und Psychotherapie, LWL Universitätsklinikum Bochum der Ruhr-Universität Bochum, Bochum
› Author Affiliations

Zusammenfassung

Der vorliegende Artikel soll eine Übersicht über bildgebende Untersuchungen im Bereich chronischer Schmerzsyndrome bieten. Auf die einleitenden Worte zur allgemeinen Phänomenologie des Schmerzes folgt ein umfassender Einblick in die gegenwärtige Anwendung funktioneller und struktureller Bildgebungstechniken am Beispiel ausgewählter Schmerzsyndrome (Chronischer Rückenschmerz, Fibromyalgiesyndrom (FMS), Phantomschmerz und Komplexes regionales Schmerzsyndrom (CRPS)). In diesem Zusammenhang werden Gemeinsamkeiten und Besonderheiten der spezifischen neurologischen Korrelate verschiedener chronischer Schmerzerkrankungen diskutiert.

Abstract

In this article, we want to provide an overview of neuroimaging studies in the field of chronic pain. Firstly, we start with a brief introduction about the phenomenology of pain. In the following section, the application of functional and structural imaging techniques will be shown in selected chronic pain syndromes (chronic back pain, fibromyalgia syndrome (FMS), phantom limb pain and complex regional pain syndrome (CRPS)). In this context, common features and special features of imaging correlates across different types of chronic pain will be discussed.



Publication History

Article published online:
06 August 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Melzack R, Casey KL. Sensory, motivational and central control determinants of chronic pain: A new conceptual model. In: The Skin Senses, Chapter: 20, Publisher: Charles C Thomas, Editors: Dan R. Kenshalo 1968; 423-439
  • 2 Apkarian AV, Bushnell MC, Treede R-DD. et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005; 9: 463-484
  • 3 Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain 2011; 152
  • 4 Treede RD, Kenshalo DR, Gracely RH. et al. The cortical representation of pain. Pain 1999; 79: 105-111
  • 5 Baliki MN, Schnitzer TJ, Bauer WR. et al. Brain Morphological Signatures for Chronic Pain. PLoS ONE 2011; 6: e26010
  • 6 Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol 2009; 87: 81-97
  • 7 Baliki MN, Apkarian AV. Nociception, Pain, Negative Moods, and Behavior Selection. Neuron 2015; 87: 474-491
  • 8 Flor H, Turk DC. Basic concepts of pain. In: Chronic Pain: An integrated biobehavioral approach. Seattle: IASP Press; 2011: 3-25
  • 9 Tracey I. Nociceptive processing in the human brain. Curr Opin Neurobiol 2005; 15: 478-487
  • 10 Merskey H, Bogduk N. IASP Task Force on Taxonomy Part III: Pain Terms, A Current List with Definitions and Notes on Usage. IASP Task Force Taxon 1994; 209-214 Im Internet: http://www.iasp-pain.org/Content/NavigationMenu/GeneralResourceLinks/PainDefinitions/default.htm#Pain
  • 11 Flor H, Birbaumer N, Turk DC. The psychobiology of chronic pain. Adv Behav Res Ther 1990; 12: 47-85
  • 12 Robinson ME, Staud R, Price DD. Pain measurement and brain activity: will neuroimages replace pain ratings?. J Pain Off J Am Pain Soc 2013; 14: 323-327
  • 13 O’Muircheartaigh J, Marquand A, Hodkinson DJ. et al. Multivariate decoding of cerebral blood flow measures in a clinical model of on-going postsurgical pain. Hum Brain Mapp 2015; 36: 633-642
  • 14 Wager TD, Atlas LY, Lindquist MA. et al. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013; 368: 1388-1397
  • 15 Flor H, Braun C, Elbert T. et al. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 1997; 224: 5-8
  • 16 Diers M, Koeppe C, Diesch E. et al. Central Processing of Acute Muscle Pain in Chronic Low Back Pain Patients: An EEG Mapping Study. J Clin Neurophysiol 2007; 24: 76-83
  • 17 Giesecke T, Gracely RH, Grant MA. et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 2004; 50: 613-623
  • 18 Giesecke T, Gracely RH, Clauw DJ. et al. Central pain processing in chronic low back pain. Evidence for reduced pain inhibition. Schmerz 2006; 20: 416-417
  • 19 Kobayashi Y, Kurata J, Sekiguchi M. et al. Augmented cerebral activation by lumbar mechanical stimulus in chronic low back pain patients: an FMRI study. Spine Phila Pa 1976 2009; 34: 2431-2436
  • 20 Baliki MN, Mansour AR, Baria AT. et al. Functional reorganization of the default mode network across chronic pain conditions. PloS One 2014; 9: e106133
  • 21 Tagliazucchi E, Balenzuela P, Fraiman D. et al. Brain resting state is disrupted in chronic back pain patients. Neurosci Lett 2010; 485: 26-31
  • 22 Apkarian AV, Sosa Y, Sonty S. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004; 24: 10410-10415
  • 23 Fritz H-C, McAuley JH, Wittfeld K. et al. Chronic Back Pain Is Associated With Decreased Prefrontal and Anterior Insular Gray Matter: Results From a Population-Based Cohort Study. J Pain Off J Am Pain Soc 2015; 17: 111-118
  • 24 Ivo R, Nicklas A, Dargel J. et al. Brain structural and psychometric alterations in chronic low back pain. Eur Spine J 2013; 22: 1958-1964
  • 25 Schmidt-Wilcke T, Leinisch E, Ganssbauer S. et al. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 2006; 125: 89-97
  • 26 Wolfe F, Clauw DJ, Fitzcharles MA. et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res Hoboken 2010; 62: 600-610
  • 27 Gibson SJ, Littlejohn GO, Gorman MM. et al. Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain 1994; 58: 185-193
  • 28 de Tommaso M, Federici A, Santostasi R. et al. Laser-evoked potentials habituation in fibromyalgia. J Pain 2011; 12: 116-124
  • 29 Lorenz J, Grasedyck K, Bromm B. Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroencephalogr Clin Neurophysiol 1996; 100: 165-168
  • 30 Lorenz J. Hyperalgesia or hypervigilance? An evoked potential approach to the study of fibromyalgia syndrome. Z Rheumatol 1998; 57 (Suppl 2): 19-22
  • 31 Diers M, Koeppe C, Yilmaz P. et al. Pain ratings and somatosensory evoked responses to repetitive intramuscular and intracutaneous stimulation in fibromyalgia syndrome. J Clin Neurophysiol 2008; 25: 153-160
  • 32 Gracely RH, Petzke F, Wolf JM. et al. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 2002; 46: 1333-1343
  • 33 Pujol J, Lopez-Sola M, Ortiz H. et al. Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI. PLoS One 2009; 4: e5224
  • 34 Maestu C, Cortes A, Vazquez JM. et al. Increased brain responses during subjectively-matched mechanical pain stimulation in fibromyalgia patients as evidenced by MEG. Clin Neurophysiol 2013; 124: 752-760
  • 35 Cook DB, Lange G, Ciccone DS. et al. Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol 2004; 31: 364-378
  • 36 Burgmer M, Pogatzki-Zahn E, Gaubitz M. et al. Altered brain activity during pain processing in fibromyalgia. Neuroimage 2009; 44: 502-508
  • 37 Valet M, Sprenger T, Boecker H. et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain−an fMRI analysis. Pain 2004; 109: 399-408
  • 38 Wager TD, Rilling JK, Smith EE. et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 2004; 303: 1162-1167
  • 39 Bingel U, Lorenz J, Schoell E. et al. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 2006; 120: 8-15
  • 40 Kong J, White NS, Kwong KK. et al. Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 2006; 27: 715-721
  • 41 Jensen KB, Kosek E, Petzke F. et al. Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain 2009; 144: 95-100
  • 42 Jensen KB, Loitoile R, Kosek E. et al. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol Pain 2012; 8: 32
  • 43 Napadow V, LaCount L, Park K. et al. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 2010; 62: 2545-2555
  • 44 Flodin P, Martinsen S, Löfgren M. et al. Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect 2014; 4: 587-594
  • 45 Ichesco E, Puiu T, Hampson JP Altered fMRI resting-state connectivity in individuals with fibromyalgia on acute pain stimulation. Eur J Pain Lond Engl 2016; 20: 1079–1089
  • 46 Tiemann L, Schulz E, Winkelmann A. et al. Behavioral and neuronal investigations of hypervigilance in patients with fibromyalgia syndrome. PLoS One 2012; 7: e35068
  • 47 Carrillo-de-la-Pena MT, Trinanes Y, Gonzalez-Villar A. et al. Filtering out repetitive auditory stimuli in fibromyalgia: a study of P50 sensory gating. Eur J Pain 2015; 19: 576-584
  • 48 McDermid AJ, Rollman GB, McCain GA. Generalized hypervigilance in fibromyalgia: evidence of perceptual amplification. Pain 1996; 66: 133-144
  • 49 Carrillo-de-la-Pena MT, Vallet M, Perez MI. et al. Intensity dependence of auditory-evoked cortical potentials in fibromyalgia patients: a test of the generalized hypervigilance hypothesis. J Pain 2006; 7: 480-487
  • 50 Gerster JC, Hadj-Djilani A. Hearing and vestibular abnormalities in primary fibrositis syndrome. J Rheumatol 1984; 11: 678-680
  • 51 Kuchinad A, Schweinhardt P, Seminowicz DA. et al. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain?. J Neurosci 2007; 27: 4004-4007
  • 52 Schmidt-Wilcke T, Luerding R, Weigand T Striatal grey matter increase in patients suffering from fibromyalgia − A voxel-based morphometry study. Pain 2007;
  • 53 Kim H, Kim J, Loggia ML. et al. Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks. Neuroimage Clin 2015; 7: 667-677
  • 54 Lutz J, Jager L, de Quervain D. et al. White and gray matter abnormalities in the brain of patients with fibromyalgia: a diffusion-tensor and volumetric imaging study. Arthritis Rheum 2008; 58: 3960-3969
  • 55 Sundgren PC, Petrou M, Harris RE. et al. Diffusion-weighted and diffusion tensor imaging in fibromyalgia patients: a prospective study of whole brain diffusivity, apparent diffusion coefficient, and fraction anisotropy in different regions of the brain and correlation with symptom severity. Acad Radiol 2007; 14: 839-846
  • 56 Hunter JP, Katz J, Davis KD. The effect of tactile and visual sensory inputs on phantom limb awareness. Brain 2003; 126: 579-589
  • 57 Kooijman CM, Dijkstra PU, Geertzen JH. et al. Phantom pain and phantom sensations in upper limb amputees: an epidemiological study. Pain 2000; 87: 33-41
  • 58 Jensen TS, Krebs B, Nielsen J. et al. Phantom limb, phantom pain and stump pain in amputees during the first 6 months following limb amputation. Pain 1983; 17: 243-256
  • 59 Nikolajsen L, Ilkjaer S, Krøner K. et al. The influence of preamputation pain on postamputation stump and phantom pain. Pain 1997; 72: 393-405
  • 60 Flor H, Elbert T, Knecht S. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995; 375: 482-484
  • 61 Chen R, Corwell B, Yaseen Z. et al. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 1998; 18: 3443-3450
  • 62 Schwenkreis P, Pleger B, Cornelius B. et al. Reorganization in the ipsilateral motor cortex of patients with lower limb amputation. Neurosci Lett 2003; 349: 187-190
  • 63 Simoes EL, Bramati I, Rodrigues E. et al. Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees. J Neurosci 2012; 32: 3211-3220
  • 64 Hsu C, Sliwa JA. Phantom breast pain as a source of functional loss. Am J Phys Med Rehabil 2004; 83: 659-662
  • 65 Rothemund Y, Grusser SM, Liebeskind U. et al. Phantom phenomena in mastectomized patients and their relation to chronic and acute pre-mastectomy pain. Pain 2004; 107: 140-146
  • 66 Marbach JJ. Phantom tooth pain: differential diagnosis and treatment. J Mass Dent Soc 1996; 44: 14-18
  • 67 Marbach JJ. Orofacial phantom pain: theory and phenomenology. J Am Dent Assoc 1996; 127: 221-229
  • 68 Fieldsen D, Wood S. Dealing with phantom limb pain after amputation. Nurs Times 2011; 107: 21-23
  • 69 Fisher CM. Phantom erection after amputation of penis. Case description and review of the relevant literature on phantoms. Can J Neurol Sci 1999; 26: 53-56
  • 70 Ramachandran VS, McGeoch PD. Occurrence of phantom genitalia after gender reassignment surgery. Med Hypotheses 2007; 69: 1001-1003
  • 71 Flor H. Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol 2002; 1: 182-189
  • 72 Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity?. Nat Rev Neurosci 2006; 7: 873-881
  • 73 Sherman RA, Sherman CJ, Bruno GM. Psychological factors influencing chronic phantom limb pain: an analysis of the literature. Pain 1987; 28: 285-295
  • 74 Hill A. Phantom limb pain: a review of the literature on attributes and potential mechanisms. J Pain Symptom Manage 1999; 17: 125-142
  • 75 Elbert T, Flor H, Birbaumer N. et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 1994; 5: 2593-2597
  • 76 Yang TT, Gallen C, Schwartz B. et al. Sensory maps in the human brain. Nature 1994; 368: 592-593
  • 77 Price DD, Verne GN, Schwartz JM. Plasticity in brain processing and modulation of pain. Prog Brain Res 2006; 157: 333-352
  • 78 Cohen LG, Bandinelli S, Findley TW. et al. Motor reorganization after upper limb amputation in man. Brain 1991; 114: 615-627
  • 79 Kew JJ, Ridding MC, Rothwell JC. et al. Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J Neurophysiol 1994; 72: 2517-2524
  • 80 Karl A, Birbaumer N, Lutzenberger W. et al. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 2001; 21: 3609-3618
  • 81 Lotze M, Flor H, Grodd W. et al. Phantom movements and pain. An fMRI study in upper limb amputees. Brain 2001; 124: 2268-2277
  • 82 Karl A, Mühlnickel W, Kurth R. et al. Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 2004; 110: 90-102
  • 83 Makin TR, Scholz J, Henderson Slater D. et al. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain J Neurol 2015; 138: 2140-2146
  • 84 Draganski B, Moser T, Lummel N. et al. Decrease of thalamic gray matter following limb amputation. Neuroimage 2006; 31: 951-957
  • 85 Simoes EL, Bramati I, Rodrigues E. et al. Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees. J Neurosci 2012; 32: 3211-3220
  • 86 Juottonen K, Gockel M, Silén T. et al. Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain 2002; 98: 315-323
  • 87 Maihöfner C, Handwerker HO, Neundörfer B. et al. Patterns of cortical reorganization in complex regional pain syndrome. Neurology 2003; 61: 1707-1715
  • 88 Maihöfner C, Handwerker HO, Birklein F. Functional imaging of allodynia in complex regional pain syndrome. Neurology 2006; 66: 711-717
  • 89 Tegenthoff M, Ragert P, Pleger B. et al. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 2005; 3: e362
  • 90 Maihöfner C, Schmelz M, Forster C. et al. Neural activation during experimental allodynia: a functional magnetic resonance imaging study. Eur J Neurosci 2004; 19: 3211-3218
  • 91 Maihöfner C, Baron R, DeCol R. et al. The motor system shows adaptive changes in complex regional pain syndrome. Brain J Neurol 2007; 130: 2671-2687
  • 92 Bolwerk A, Seifert F, Maihöfner C. Altered resting-state functional connectivity in complex regional pain syndrome. J Pain Off J Am Pain Soc 2013; 14: e8
  • 93 Barad MJ, Ueno T, Younger J. et al. Complex regional pain syndrome is associated with structural abnormalities in pain-related regions of the human brain. J Pain 2014; 15: 197-203
  • 94 Lee DH, Lee KJ, Cho KI. et al. Brain alterations and neurocognitive dysfunction in patients with complex regional pain syndrome. J Pain 2015; 16: 580-586
  • 95 Geha PY, Baliki MN, Harden RN. et al. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 2008; 60: 570-581