Dtsch Med Wochenschr 2021; 146(02): 75-84
DOI: 10.1055/a-1199-8193
Dossier

Therapieempfehlungen bei Fettstoffwechselstörungen: Die neue Leitlinie von 2019

Management of dyslipidaemias: The New 2019 ESC/EAS-Guideline
Anja Vogt
,
Oliver Weingärtner

Fettstoffwechselstörungen sind kausal für den Verlauf kardiovaskulärer Krankheiten. Durch frühe Diagnostik und zielwertorientierte Therapie lassen sich kardiovaskuläre Ereignisse reduzieren. Insofern kommt Hausärzten beim Screening und bei der Betreuung Betroffener eine Schlüsselrolle zu. Welche Empfehlungen die Leitlinie zu Risikostratifikation, Zielwertbestimmung und therapeutischen Strategien aufzeigt, erklärt dieser Beitrag.

Abstract

The updated guidelines for the management of dyslipidaemias 2019 sticks to the concept of individual risk-based intervention strategies, but intensifies LDL-C goals. Next to the established SCORE system non-invasive imaging techniques such as coronary CT or ultrasound of carotid or femoral arteries are now recommended for improved risk stratification. Screening for lipoprotein(a) identifies persons at higher cardiovascular risk. Non-statin trials with ezetimibe and PSCK9-inhibitors demonstrated further relative risk reduction for cardiovascular events. Cardiovascular risk reduction depends on the absolute lowering of LDL-C, duration of therapy and the individual cardiovascular risk. For patients at very high risk the new LDL-C goal is < 1.4 mmol/l (55 mg/dl) and reduction of ≥ 50 % from baseline. The overall aim is to reduce “cholesterol life years”.



Publication History

Article published online:
19 January 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Mach F, Baigent C, Catapano AL. et al 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2019; DOI: 10.1093/eurheartj/ehz455.
  • 2 Cannon CP, Blazing MA, Giugliano RP. et al Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med 2015; 372: 2387-2397 . doi:10.1056/NEJMoa1410489
  • 3 Bach RG, Cannon CP, Giugliano RP. et al Effect of Simvastatin-Ezetimibe Compared With Simvastatin Monotherapy After Acute Coronary Syndrome Among Patients 75 Years or Older: A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol 2019; 4: 846-854 . doi:10.1001/jamacardio.2019.2306
  • 4 Sabatine MS, Giugliano RP, Keech AC. et al Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017; 376: 1713-1722 . doi:10.1056/NEJMoa1615664
  • 5 Schwartz GG, Steg PG, Szarek M. et al Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018; 379: 2097-2107 . doi:10.1056/NEJMoa1801174
  • 6 Koren MJ, Sabatine MS, Giugliano RP. et al Long-Term Efficacy and Safety of Evolocumab in Patients With Hypercholesterolemia. J Am Coll Cardiol 2019; 74: 2132-2146 . doi:10.1016/j.jacc.2019.08.1024
  • 7 Ference BA, Bhatt DL, Catapano AL. et al Association of Genetic Variants Related to Combined Exposure to Lower Low-Density Lipoproteins and Lower Systolic Blood Pressure With Lifetime Risk of Cardiovascular Disease. JAMA 2019; DOI: 10.1001/jama.2019.14120.
  • 8 Ference BA, Ginsberg HN, Graham I. et al Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. Eur Heart J 2017; 38: 2459-2472 . doi:10.1093/eurheartj/ehx144
  • 9 Ference BA, Kastelein JJP, Ray KK. et al Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease. JAMA 2019; 321: 364-373 . doi:10.1001/jama.2018.20045
  • 10 Kamstrup PR, Benn M, Tybjaerg-Hansen A. et al Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study. Circulation 2008; 117: 176-184 . doi:10.1161/CIRCULATIONAHA.107.715698
  • 11 Kronenberg F, Kronenberg MF, Kiechl S. et al Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis: prospective results from the Bruneck study. Circulation 1999; 100: 1154-1160
  • 12 Burgess S, Ference BA, Staley JR. et al Association of LPA Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies: A Mendelian Randomization Analysis. JAMA Cardiol 2018; 3: 619-627 . doi:10.1001/jamacardio.2018.1470
  • 13 Lamina C, Kronenberg F. et al Estimation of the Required Lipoprotein(a)-Lowering Therapeutic Effect Size for Reduction in Coronary Heart Disease Outcomes: A Mendelian Randomization Analysis. JAMA Cardiol 2019; 4: 575-579 . doi:10.1001/jamacardio.2019.1041
  • 14 Khera AV, Emdin CA, Drake I. et al Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N Engl J Med 2016; 375: 2349-2358 . doi:10.1056/NEJMoa1605086
  • 15 Helgadottir A, Thorleifsson G, Alexandersson KF. et al Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease. Eur Heart J 2020; 41: 2618-2628
  • 16 Weingärtner O, Patel SB, Lüthjohann D. It’s time to personalize and optimize lipid-lowering therapies. Eur Heart J 2020; 41: 2629-2631
  • 17 Lütjohann D, Stellard F, Mulder MT. et al The emerging concept of “individualized cholesterol-lowering therapy”: a change in paradigm. Pharmacol Ther 2019; 199: 111-116
  • 18 Pedro-Botet J, Rubies-Prat J. Statin-associated muscle symptoms: beware of the nocebo effect. Lancet 2017; 389: 2445-2446 . doi:10.1016/S0140-6736(17)31163-7
  • 19 Sudhop T, Lütjohann D, Kodal A. et al Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 2002; 106: 1943-1948
  • 20 Bohula EA, Morrow DA, Giugliano RP. et al Atherothrombotic risk stratification and ezetimibe for secondary prevention. J Am Coll Cardiol 2017; 69: 911-921
  • 21 Eisen A, Cannon CP, Blazing MA. et al The benefit of adding ezetimibe to statin therapy in patients with prior coronary artery bypass graft surgery and acute coronary syndrom in the IMPROVE-IT trial. Eur Heart J 2016; 37: 3576-3584
  • 22 Gemeinsamer Bundesausschuss. Arzneimittel-Richtlinie/Anlage III: Nummer 35a – Evolocumab 2016. Im Internet (Stand 30.10.2020): https://www.g-ba.de/beschluesse/2600
  • 23 Cuchel M, Meagher EA, du Toit TheronH. et al Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 2013; 381: 40-46 . doi:10.1016/S0140-6736(12)61731-0
  • 24 D’Erasmo L, Cefalu AB, Noto D. et al Efficacy of Lomitapide in the Treatment of Familial Homozygous Hypercholesterolemia: Results of a Real-World Clinical Experience in Italy. Adv Ther 2017; 34: 1200-1210 . doi:10.1007/s12325-017-0531-x
  • 25 Bhatt DL, Steg PG, Miller M. et al Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med 2019; 380: 11-22 . doi:10.1056/NEJMoa1812792
  • 26 Witztum JL, Gaudet D, Freedman SD. et al Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med 2019; 381: 531-542 . doi:10.1056/NEJMoa1715944