Rofo 2020; 192(10): 937-944
DOI: 10.1055/a-1198-5729
Review

Staging des Zervixkarzinoms – die neue Rolle der MRT-Bildgebung

Article in several languages: English | deutsch
Johanna Merz
1   Department of Radiology, Freiburg University Hospital, Freiburg, Germany
,
Michaela Bossart
2   Department of Gynecology and Obstetrics, Freiburg University Hospital, Freiburg, Germany
,
Fabian Bamberg
1   Department of Radiology, Freiburg University Hospital, Freiburg, Germany
,
Michel Eisenblaetter
1   Department of Radiology, Freiburg University Hospital, Freiburg, Germany
› Author Affiliations

Zusammenfassung

Das Zervixkarzinom ist weltweit noch immer das vierthäufigste Malignom der Frau und hat eine hohe Mortalitätsrate. Die Prognose sowie die Therapie hängen maßgeblich von der Tumorausdehnung bei Erstdiagnose ab. Daraus wird ersichtlich, welchen Stellenwert das Staging des Zervixkarzinoms hat. Um ein weltweit einheitliches Vorgehen zu ermöglichen, beruhte das Staging des Zervixkarzinoms bis 2018 auf flächendeckend verfügbaren Untersuchungen wie der Narkoseuntersuchung, der histologischen Sicherung mittels Konisation oder Zervixbiopsie, der systematischen pelvinen und gegebenenfalls retroperitonealen Lymphonodektomie sowie der Zystoskopie und Proktoskopie, dem i. v.-Pyelogramm und dem Röntgen-Thorax. Da jedoch das primäre Tumorstadium mit dem alten Staging-System häufig unterschätzt wurde, berücksichtigt die 2018 überarbeitete FIGO-Klassifikation nun erstmals Schnittbildverfahren zur Festlegung des initialen Tumorstadiums. Außerdem darf ein bereits festgelegtes Tumorstadium auf Grundlage radiologischer Befunde angepasst werden. Die Magnetresonanztomografie (MRT) ist dank ihres hervorragenden Weichgewebekontrastes die Methode der Wahl für das lokale Tumorstaging, ebenso wie für die Evaluation des Therapieerfolgs, die Detektion von Tumorrezidiven sowie für Nachsorgeuntersuchungen. Radiologen, die eine Becken-MRT bei Verdacht auf Zervixkarzinom interpretieren, müssen also vertraut sein mit dem aktuellen Staging-System nach FIGO. Denn nur so gelingt es, das Tumorstadium möglichst exakt festzulegen und damit den Grundstein für den Therapieerfolg für die Patientinnen zu legen. Ziel dieser Übersichtsarbeit ist es, die Neuerungen der überarbeiteten FIGO-Klassifikation darzustellen sowie den Stellenwert der MRT als Methode der Wahl für das lokale Tumorstaging als Ergänzung zu der klinischen Untersuchung aufzuzeigen.

Kernaussagen:

  • Das Zervixkarzinom ist weltweit das vierthäufigste Karzinom der Frau und hat eine hohe Mortalitätsrate.

  • Die FIGO-Klassifikation zum Staging des Zervixkarzinoms beruhte bis 2018 auf klinischen, flächendeckend verfügbaren Untersuchungsmethoden.

  • Das primäre Tumorstadium wurde mit dem alten Staging-System häufig unterschätzt.

  • Seit 2018 werden Schnittbildverfahren zur Darstellung des Lokalbefundes im Staging-System berücksichtigt.

  • Die MRT ist die Methode der Wahl für das lokale Tumorstaging, die Evaluation des Therapieerfolgs und die Detektion von Tumorrezidiven und möglichen Komplikationen.

Zitierweise

  • Merz J, Bossart M, Bamberg F et al. Revised FIGO Staging for Cervical Cancer – A New Role for MRI. Fortschr Röntgenstr 2020; 192: 937 – 944



Publication History

Received: 13 January 2020

Accepted: 13 May 2020

Article published online:
30 July 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Bhatla N, Berek JS, Cuello Fredes M. et al Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol Obstet 2019; 145: 129-135 . doi:10.1002/ijgo.12749
  • 2 Deutsche Gesellschaft für Gynäkologie und Geburtshilfe AGO. S3-Leitlinie Diagnostik, Therapie und Nachsorge der Patientin mit Zervixkarzinom. In 2014
  • 3 Rodriguez-Carunchio L, Soveral I, Steenbergen RD. et al HPV-negative carcinoma of the uterine cervix: a distinct type of cervical cancer with poor prognosis. BJOG 2015; 122: 119-127 . doi:10.1111/1471-0528.13071
  • 4 Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer 2017; 123: 2219-2229 . doi:10.1002/cncr.30588
  • 5 Krebsregisterdaten Zf. Krebs in Deutschland für 2015/2016. In 2019
  • 6 Schneede P. One decade of HPV vaccination in Germany. Urologe A 2017; 56: 728-733 . doi:10.1007/s00120-017-0394-4
  • 7 Frazer IH. Development and implementation of papillomavirus prophylactic vaccines. J Immunol 2014; 192: 4007-4011 . doi:10.4049/jimmunol.1490012
  • 8 Institut RK. Mitteilung der Ständigen Impfkommission (STIKO) am Robert Koch-Institut: Impfung gegen humane Papillomaviren (HPV) für Mädchen von 12 bis 17 Jahren -Empfehlung und Begründung 2007. Epid Bulletin 2007; 12: 97-103
  • 9 Institut RK. Empfehlungen der Ständigen Impfkommission (STIKO) beim Robert Koch Institut – 2018/2019. Epid Bull 2018; DOI: 10.17886/EpiBull-2018-042.5.
  • 10 Bray F, Ferlay J, Soerjomataram I. et al Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424 . doi:10.3322/caac.21492
  • 11 Lea JS, Lin KY. Cervical cancer. Obstet Gynecol Clin North Am 2012; 39: 233-253 . doi:10.1016/j.ogc.2012.02.008
  • 12 Balcacer P, Shergill A, Litkouhi B. MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls. Abdom Radiol (NY) 2019; 44: 2557-2571 . doi:10.1007/s00261-019-01984-7
  • 13 Balleyguier C, Sala E, Da Cunha T. et al Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 2011; 21: 1102-1110 . doi:10.1007/s00330-010-1998-x
  • 14 Bipat S, Glas AS, Velden J. et al Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: a systematic review. Gynecologic Oncology 2003; 91: 59-66 . doi:10.1016/s0090-8258(03)00409-8
  • 15 Patel-Lippmann K, Robbins JB, Barroilhet L. et al MR Imaging of Cervical Cancer. Magn Reson Imaging Clin N Am 2017; 25: 635-649 . doi:10.1016/j.mric.2017.03.007
  • 16 Sarabhai T, Schaarschmidt BM, Wetter A. et al Comparison of (18)F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur J Nucl Med Mol Imaging 2018; 45: 67-76 . doi:10.1007/s00259-017-3809-y
  • 17 Choi HJ, Ju W, Myung SK. et al Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci 2010; 101: 1471-1479 . doi:10.1111/j.1349-7006.2010.01532.x
  • 18 Hori M, Kim T, Murakami T. et al Uterine Cervical Carcinoma: Preoperative Staging with 3.0-T MR Imaging-Comparison with 1.5-T MR Imaging. Radiology 2009; 251: 96-104 . doi:10.1148/radiol.2511081265
  • 19 Haldorsen IS, Lura N, Blaakaer J. et al What Is the Role of Imaging at Primary Diagnostic Work-Up in Uterine Cervical Cancer?. Curr Oncol Rep 2019; 21: 77 . doi:10.1007/s11912-019-0824-0
  • 20 Johnson W, Taylor MB, Carrington BM. et al The value of hyoscine butylbromide in pelvic MRI. Clin Radiol 2007; 62: 1087-1093 . doi:10.1016/j.crad.2007.05.007
  • 21 Van Vierzen PB, Massuger LF, Ruys SH. et al Fast dynamic contrast enhanced MR imaging of cervical carcinoma. Clinical Radiology 1998; 53: 183-192 . doi:10.1016/s0009-9260(98)80098-6
  • 22 Thomeer MG, Gerestein C, Spronk S. et al Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma: systematic review and meta-analysis. Eur Radiol 2013; 23: 2005-2018 . doi:10.1007/s00330-013-2783-4
  • 23 Kinkel K, Ariche M, Tardivon AA. et al Differentiation between recurrent tumor and benign conditions after treatment of gynecologic pelvic carcinoma: value of dynamic contrast-enhanced subtraction MR imaging. Radiology 1997; 204: 55-63 . doi:10.1148/radiology.204.1.9205223
  • 24 Zahra MA, Tan LT, Priest AN. et al Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 2009; 74: 766-773 . doi:10.1016/j.ijrobp.2008.08.023
  • 25 Mitchell DG, Snyder B, Coakley F. et al Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol 2006; 24: 5687-5694 . doi:10.1200/JCO.2006.07.4799
  • 26 Wipperman J, Neil T, Williams T. Cervical Cancer: Evaluation and Management. Am Fam Physician 2018; 97: 449-454
  • 27 Kuang F, Yan Z, Wang J. et al The value of diffusion-weighted MRI to evaluate the response to radiochemotherapy for cervical cancer. Magnetic Resonance Imaging 2014; 32: 342-349 . doi:10.1016/j.mri.2013.12.007
  • 28 Lucia F, Visvikis D, Desseroit MC. et al Prediction of outcome using pretreatment (18)F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 2018; 45: 768-786 . doi:10.1007/s00259-017-3898-7
  • 29 Waggoner SE. Cervical cancer. The Lancet 2003; 361: 2217-2225 . doi:10.1016/s0140-6736(03)13778-6
  • 30 Gien LT, Covens A. Lymph node assessment in cervical cancer: prognostic and therapeutic implications. J Surg Oncol 2009; 99: 242-247 . doi:10.1002/jso.21199
  • 31 Flueckiger F, Ebner F, Poschauko H. et al Cervical Cancer: Serial MR Imaging before and after Primary Radiation Therapy – A 2-year Follow-up Study. Radiology 1992; 184: 89-93 . doi:10.1148/radiology.184.1.1609108
  • 32 Park JJ, Kim CK, Park SY. et al Assessment of early response to concurrent chemoradiotherapy in cervical cancer: value of diffusion-weighted and dynamic contrast-enhanced MR imaging. Magn Reson Imaging 2014; 32: 993-1000 . doi:10.1016/j.mri.2014.05.009
  • 33 Kim HS, Kim CK, Park BK. et al Evaluation of therapeutic response to concurrent chemoradiotherapy in patients with cervical cancer using diffusion-weighted MR imaging. J Magn Reson Imaging 2013; 37: 187-193 . doi:10.1002/jmri.23804
  • 34 Elit L, Fyles AW, Devries MC. et al Follow-up for women after treatment for cervical cancer: a systematic review. Gynecol Oncol 2009; 114: 528-535 . doi:10.1016/j.ygyno.2009.06.001
  • 35 Jung EJ, Byun JM, Kim YN. et al Cervical Adenocarcinoma Has a Poorer Prognosis and a Higher Propensity for Distant Recurrence Than Squamous Cell Carcinoma. Int J Gynecol Cancer 2017; 27: 1228-1236 . doi:10.1097/IGC.0000000000001009
  • 36 Hricak H, Swift PS, Campos Z. et al Irradiation of the cervix uteri: value of unenhanced and contrast-enhanced MR imaging. Radiology 1993; 189: 381-388 . doi:10.1148/radiology.189.2.8210364
  • 37 Bae JM, Kim CK, Park JJ. et al Can diffusion-weighted magnetic resonance imaging predict tumor recurrence of uterine cervical cancer after concurrent chemoradiotherapy?. Abdom Radiol (NY) 2016; 41: 1604-1610 . doi:10.1007/s00261-016-0730-y
  • 38 Lee SI, Catalano OA, Dehdashti F. Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med 2015; 56: 436-443 . doi:10.2967/jnumed.114.145011
  • 39 Hricak H, Gatsonis C, Coakley F. et al. Early Invasive Cervical Cancer: CT and MR Imaging in Preoperative Evaluation – ACRIN/GOG Comparative Study of Diagnostic Performance and Interobserver Variability. Radiology 2007; 245: 491-498
  • 40 Testa AC, Di Legge A, De Blasis I. et al Imaging techniques for the evaluation of cervical cancer. Best Pract Res Clin Obstet Gynaecol 2014; 28: 741-768 . doi:10.1016/j.bpobgyn.2014.04.009
  • 41 Grueneisen J, Schaarschmidt BM, Heubner M. et al Integrated PET/MRI for whole-body staging of patients with primary cervical cancer: preliminary results. Eur J Nucl Med Mol Imaging 2015; 42: 1814-1824 . doi:10.1007/s00259-015-3131-53