Subscribe to RSS
DOI: 10.1055/a-1167-8368
Automatic Alignment of Cranial CT Examinations to the Anterior Commissure/Posterior Commissure (ACPC) Reference Plane for Reliable Interpretation and Quality Assurance
Automatische Ausrichtung kranialer CTs an der Commissura anterior/Commissura-posterior (ACPC)-Referenzebene zur zuverlässigen Bildinterpretation und QualitätssicherungAbstract
Alignment of cranial CT scans (cCTs) to a common reference plane simplifies anatomical-landmark-based orientation and eases follow-up assessment of intracranial findings. We developed and open sourced a fully automated system, which aligns cCTs to the Anterior Commissure/Posterior Commissure (ACPC) line and exports the results to the PACS. FMRIB’s Linear Image Registration Tool (FLIRT) with an ACPC-aligned atlas is used in the alignment step. Five mm mean slabs are generated with the top non-air slice as the starting point. For evaluation, 301 trauma cCTs from the CQ500 dataset were processed. In visual comparison with the respective ACPC-aligned atlas, all were successfully aligned. Image quality (IQ) and ease of identification of the central sulcus (CS) were rated on a Likert scale (5 = excellent IQ/immediate CS identification). The median IQ was 4 (range: 2–4) in the original series and 5 (range: 4–5) in the ACPC-aligned series (p < 0.0001). The CS was more easily identified after fatbACPC (original scans: 4 (range: 2–5); ACPC-aligned: 5 (range: 4–5); p < 0.0001). The mean rotation to achieve alignment was |X| = 6.4 ± 5.2° ([–X,+X] = –26.8°–24.2°), |Y| = 2.1 ± 1.7° ([-Y,+Y] = –8.7°–9.8°), and |Z| = 3.1 ± 2.4° ([–Z,+Z] = –14.3°–12.5°). The developed system can robustly and automatically align cCTs to the ACPC line. Degrees of deviation from the ideal alignment could be used for quality assurance.
Key Points:
-
fatbACPC automatically aligns cranial CT scans to the Anterior Commissure/Posterior Commissure plane.
-
ACPC-aligned images simplify anatomical-landmark-based orientation.
-
fatbACPC does not impact image quality.
-
fatbACPC is robust, fully PACS-integrated, and Open Source: https://github.com/BrainImAccs
Citation Format
-
Rubbert C, Turowski B, Caspers J. Automatic Alignment of Cranial CT Examinations to the Anterior Commissure/Posterior Commissure (ACPC) Reference Plane for Reliable Interpretation and Quality Assurance. Fortschr Röntgenstr 2021; 193: 61 – 67
Zusammenfassung
Die Ausrichtung kranialer CTs (cCTs) an einer etablierten Referenzebene unterstützt die Orientierung anhand anatomischer Landmarken und vereinfacht die Verlaufsbeurteilung von Pathologien. Wir haben ein vollautomatisches System als Open Source entwickelt, welches cCTs an der Commissura anterior/Commissura posterior (ACPC) ausrichtet und in das PACS exportiert. Im Ausrichtungsschritt wird das FMRIB Linear Image Registration Tool (FLIRT) mit einem ACPC-orientierten Atlas genutzt. 5mm-Mittelwert-Scheiben mit der obersten soliden Schicht als Ausgangspunkt werden generiert. Zur Evaluation wurden 301 Trauma-cCTs des CQ500-Datensatzes genutzt. Im visuellen Vergleich mit dem ACPC-orientierten Atlas wurde alle cCTs erfolgreich ausgerichtet. Bildqualität (BQ) und der Aufwand, den Sulcus centralis (SC) zu identifizieren, wurden auf einer Likert Skala eingestuft (5 = optimale Bildqualität/auf Anhieb zu identifizierender SC). Die mediane BQ betrug 4 (Spannbreite: 2–4) in den originalen Serien und 5 (4–5) in den ACPC-ausgerichteten Serien (p < 0,0001). Der SC war nach fatbACPC einfacher zu identifizieren (Original: 4 (2–5); ACPC: 5 (4–5); p < 0,0001). Die mittlere Rotation betrug |X| = 6,4 ± 5,2° ([–X,+X] = –26,8°–24,2°), |Y| = 2,1 ± 1,7° ([–Y,+Y] = –8,7°–9,8°) und |Z| = 3,1 ± 2,4° ([–Z,+Z] = –14,3°–12,5°). Das entwickelte System kann cCTs verlässlich und automatisch an die ACPC-Linie anpassen. Abweichungen von der idealen Ausrichtung könnten zur Qualitätssicherung genutzt werden.
Kernaussagen:
-
fatbACPC richtet kraniale CT Untersuchungen automatisch an der Anterior Commissure/Posterior Commissure Referenzebene aus.
-
ACPC-ausgerichtete Bilder erleichtern die Orientierung an anatomischen Landmarken.
-
fatbACPC setzt die Bildqualität nicht herab.
-
fatbACPC ist robust, vollständig PACS-integrierbar und Open Source: https://github.com/BrainImAccs
Key words
multidetector computed tomography - neuroimaging - software - rotation - follow-up studiesPublication History
Received: 05 September 2019
Accepted: 20 April 2020
Article published online:
09 June 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Schellingerhout D, Lev MH, Bagga RJ. et al. Coregistration of head CT comparison studies: assessment of clinical utility. United States: Acad Radiol 2003; 10: 242-248
- 2 Forsberg D, Gupta A, Mills C. et al. Synchronized navigation of current and prior studies using image registration improves radiologist’s efficiency. Int J Comput Assist Radiol Surg 2017; 12: 431-438
- 3 Naidich TP, Brightbill TC. Systems for localizing fronto-parietal gyri and sulci on axial CT and MRI. Int J Neuroradiol 1996; 2: 313-338
- 4 Naidich TP, Brightbill TC. The intraparietal sulcus: a landmark for localization of pathology on axial CT scans. Int J Neuroradiol 1995; 1: 3-16
- 5 Naidich TP, Brightbill TC. The pars marginalis: part I. A “bracket” sign for the central sulcus in axial plane CT and MRI. Int J Neuroradiol 1996; 2: 3-19
- 6 Talairach J, Tournoux P. Co-planar Stereotaxic Atlas of the Human Brain. 1. George Thieme Verlag; 1988
- 7 Evans AC, Collins DL, Mills SR. et al 3D statistical neuroanatomical models from 305 MRI volumes. IEEE 1993; 1813-1817
- 8 Weiss KL, Storrs J, Weiss JL. et al. CT brain prescriptions in Talairach space: a new clinical standard. American Journal of Neuroradiology 2004; 25: 233-237
- 9 Kim YI, Ahn KJ, Chung YA. et al. A new reference line for the brain CT: the tuberculum sellae-occipital protuberance line is parallel to the anterior/posterior commissure line. AJNR Am J Neuroradiol 2009; 30: 1704-1708
- 10 Yeoman LJ, Howarth L, Britten A. et al. Gantry angulation in brain CT: dosage implications, effect on posterior fossa artifacts, and current international practice. Radiology 1992; 184: 113-116
- 11 Tange O. GNU Parallel 2018 [Internet]. Zenodo 2018 Mar. Available from: https://doi.org/10.5281/zenodo.1146014
- 12 Woolrich MW, Jbabdi S, Patenaude B. et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage 2009; 45 (Suppl. 01) S173-S186
- 13 Smith SM, Jenkinson M, Woolrich MW. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23 (Suppl. 01) S208-S219
- 14 Jenkinson M, Beckmann CF, Behrens TEJ. et al. FSL. Neuroimage 2012; 62: 782-790
- 15 Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Medical Image Analysis 2001; 5: 143-156
- 16 Jenkinson M, Bannister P, Brady M. et al. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841
- 17 Rorden C, Bonilha L, Fridriksson J. et al. Age-specific CT and MRI templates for spatial normalization. Neuroimage 2012; 61: 957-965
- 18 McCarthy P, Cottaar M, Webster M. et al fslpy [Internet]. Zenodo 2018. Available from: https://doi.org/10.5281/zenodo.1470750
- 19 Domenichelli DE, Arnulfo G. nifti2dicom [Internet]. Zenodo 2018 Sep. Available from: https://doi.org/10.5281/zenodo.1410099
- 20 Chilamkurthy S, Ghosh R, Tanamala S. et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet 2018; 392: 2388-2396
- 21 Ulin K, Urie MM, Cherlow JM. Results of a multi-institutional benchmark test for cranial CT/MR image registration. Int J Radiat Oncol Biol Phys 2010; 77: 1584-1589