Hamostaseologie 2020; 40(03): 364-378
DOI: 10.1055/a-1153-5824
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Can We Measure the Individual Prothrombotic or Prohemorrhagic Tendency by Global Coagulation Tests?

Sara Reda*
1   Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
,
Laure Morimont*
2   Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur, Belgium
3   Qualiblood s.a., Namur, Belgium
,
Jonathan Douxfils
2   Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur, Belgium
3   Qualiblood s.a., Namur, Belgium
,
Heiko Rühl
1   Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

31. Januar 2020

30. März 2020

Publikationsdatum:
29. Juli 2020 (online)

Abstract

Hemostasis is a complex process in which abnormalities can cause shifts toward prothrombotic or prohemorrhagic states resulting in thrombosis or bleeding, respectively. Several coagulation tests may be required to characterize these defects but may yet not always reflect a patient's true hemostatic capacity. Thus, global coagulation tests aiming to simulate the coagulation process in vitro instead of measuring single components thereof are certainly of interest to assess prothrombotic or prohemorrhagic tendencies. This review describes the development and application of global coagulation tests, concentrating on the more widely used methods of viscoelastometry and thrombin generation. A focus is placed on conditions characterized by simultaneous changes of various components of hemostasis, such as anticoagulant therapy or hormone-induced coagulopathy, in which global coagulation tests are especially promising. If the key challenges of standardization and automation of these tests are solved, as is the case with automated thrombogram or clot waveform analysis, global coagulation assays will play an important role in the future of laboratory diagnostics of hemostasis and thrombosis.

Zusammenfassung

Die Hämostase ist ein komplexer Prozess, bei dem Anomalien prothrombotische oder prohämorrhagische Zustände auslösen können, die zu einer Thrombose oder Blutung führen. Die Diagnose solcher Störungen kann mehrere Labortests erforderlich machen, die dennoch nicht immer die tatsächliche Hämostasekapazität eines Patienten widerspiegeln. Daher zielen Globalteste der Gerinnung darauf ab, den Gerinnungsprozess in vitro zu simulieren, anstatt einzelne daran beteiligte Komponenten zu messen. Diese Übersichtsarbeit beschreibt Entwicklung und Einsatz dieser Globalteste, wobei sie sich auf die verbreiteten Methoden der Viskoelastometrie und Thrombingenerierung konzentriert. Im Fokus stehen Zustände mit gleichzeitigen Veränderungen verschiedener Hämostasekomponenten, etwa Antikoagulanzientherapie oder Hormon-induzierte Koagulopathie, bei denen der Einsatz von Globaltesten besonders vielversprechend ist. Falls es, wie beim Automated Thrombogram oder der Clot Waveform Analyse, gelingt, die zentralen Herausforderungen der Standardisierung und Automatisierung zu lösen, werden Globalteste der Gerinnung eine wichtige Rolle in der Zukunft der Labordiagnostik von Hämostase und Thrombose spielen.

* Both authors contributed equally to this article.


 
  • References

  • 1 Brummel-Ziedins KE, Wolberg AS. Global assays of hemostasis. Curr Opin Hematol 2014; 21 (05) 395-403
  • 2 van Geffen M, van Heerde WL. Global haemostasis assays, from bench to bedside. Thromb Res 2012; 129 (06) 681-687
  • 3 Kozek-Langenecker SA, Afshari A, Albaladejo P. , et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 2013; 30 (06) 270-382
  • 4 Spahn DR, Bouillon B, Cerny V. , et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 2013; 17 (02) R76
  • 5 Hartert H. Blutgerinnungsstudien mit der Thrombelastographie; einem neuen Untersuchungsverfahren. Klin Wochenschr 1948; 26 (37–38): 577-583
  • 6 Schols SE, Heemskerk JW, van Pampus EC. Correction of coagulation in dilutional coagulopathy: use of kinetic and capacitive coagulation assays to improve hemostasis. Transfus Med Rev 2010; 24 (01) 44-52
  • 7 Raviv G, Cramer DB, Epstein M, Zukerman L, Caprini JA. Computerization of three-channel thrombelastograph. J Med 1978; 9 (01) 33-41
  • 8 Perry DJ, Fitzmaurice DA, Kitchen S, Mackie IJ, Mallett S. Point-of-care testing in haemostasis. Br J Haematol 2010; 150 (05) 501-514
  • 9 Kang YG, Martin DJ, Marquez J. , et al. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth Analg 1985; 64 (09) 888-896
  • 10 Tuman KJ, Spiess BD, Schoen RE, Ivankovich AD. Use of thromboelastography in the management of von Willebrand's disease during cardiopulmonary bypass. J Cardiothorac Anesth 1987; 1 (04) 321-324
  • 11 Olechowski B, Dalton RT, Khanna V. , et al. Detection of individual responses to clopidogrel: validation of a novel, rapid analysis using thrombelastography 6s. Cardiovasc Ther 2018; 36 (04) e12433
  • 12 Hett DA, Walker D, Pilkington SN, Smith DC. Sonoclot analysis. Br J Anaesth 1995; 75 (06) 771-776
  • 13 Corey FS, Walker WF. Sonic estimation of elasticity via resonance: a new method of assessing hemostasis. Ann Biomed Eng 2016; 44 (05) 1405-1424
  • 14 Nelb GW, Kamykowski GW, Ferry JD. Rheology of fibrin clots. V. Shear modulus, creep, and creep recovery of fine unligated clots. Biophys Chem 1981; 13 (01) 15-23
  • 15 Braun PJ, Givens TB, Stead AG. , et al. Properties of optical data from activated partial thromboplastin time and prothrombin time assays. Thromb Haemost 1997; 78 (03) 1079-1087
  • 16 Bakhtiari K, Meijers JC, de Jonge E, Levi M. Prospective validation of the International Society of Thrombosis and Haemostasis scoring system for disseminated intravascular coagulation. Crit Care Med 2004; 32 (12) 2416-2421
  • 17 Levi M, Toh CH, Thachil J, Watson HG. ; British Committee for Standards in Haematology. Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br J Haematol 2009; 145 (01) 24-33
  • 18 Dempfle CE, Lorenz S, Smolinski M. , et al. Utility of activated partial thromboplastin time waveform analysis for identification of sepsis and overt disseminated intravascular coagulation in patients admitted to a surgical intensive care unit. Crit Care Med 2004; 32 (02) 520-524
  • 19 Evrard J, Morimont L, Siriez R, Dogne JM, Douxfils J. Assessment of the APC resistance measured by thrombin generation and clot waveform analysis: a pilot study; Special Issue: Abstracts of the XXVII Congress of the International Society on Thrombosis and Haemostasis, July 6–10, 2019. Res Pract Thromb Haemost 2019; S1: 1-891
  • 20 MacFarlane RG, Biggs R. A thrombin generation test; the application in haemophilia and thrombocytopenia. J Clin Pathol 1953; 6 (01) 3-8
  • 21 Pitney WR, Dacie JV. A simple method of studying the generation of thrombin in recalcified plasma; application in the investigation of haemophilia. J Clin Pathol 1953; 6 (01) 9-14
  • 22 Hemker HC, Al Dieri R, De Smedt E, Béguin S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb Haemost 2006; 96 (05) 553-561
  • 23 Kintigh J, Monagle P, Ignjatovic V. A review of commercially available thrombin generation assays. Res Pract Thromb Haemost 2017; 2 (01) 42-48
  • 24 Hemker HC, Al Dieri R, Béguin S. Thrombin generation assays: accruing clinical relevance. Curr Opin Hematol 2004; 11 (03) 170-175
  • 25 Douxfils J, Morimont L, Delvigne AS. , et al. Validation and standardization of the ETP-based activated protein C resistance test for the clinical investigation of steroid contraceptives in women: an unmet clinical and regulatory need. Clin Chem Lab Med 2020; 58 (02) 294-305
  • 26 Morimont L, Bouvy C, Delvigne AS, Dogné JM, Douxfils J. Proof of concept of a new scale for the harmonization and the standardization of the ETP-based APC resistance. J Thromb Haemost 2020; 18 (04) 895-904
  • 27 Curvers J, Thomassen MC, Rimmer J. , et al. Effects of hereditary and acquired risk factors of venous thrombosis on a thrombin generation-based APC resistance test. Thromb Haemost 2002; 88 (01) 5-11
  • 28 Douxfils J, Morimont L, Bouvy C. , et al. Assessment of the analytical performances and sample stability on ST Genesia system using the STG-DrugScreen application. J Thromb Haemost 2019; 17 (08) 1273-1287
  • 29 Tripodi A, Chantarangkul V, Martinelli I, Bucciarelli P, Mannucci PM. A shortened activated partial thromboplastin time is associated with the risk of venous thromboembolism. Blood 2004; 104 (12) 3631-3634
  • 30 Hron G, Eichinger S, Weltermann A, Quehenberger P, Halbmayer WM, Kyrle PA. Prediction of recurrent venous thromboembolism by the activated partial thromboplastin time. J Thromb Haemost 2006; 4 (04) 752-756
  • 31 Legnani C, Mattarozzi S, Cini M, Cosmi B, Favaretto E, Palareti G. Abnormally short activated partial thromboplastin time values are associated with increased risk of recurrence of venous thromboembolism after oral anticoagulation withdrawal. Br J Haematol 2006; 134 (02) 227-232
  • 32 Kaufmann CR, Dwyer KM, Crews JD, Dols SJ, Trask AL. Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma 1997; 42 (04) 716-720 , discussion 720–722
  • 33 Park MS, Martini WZ, Dubick MA. , et al. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma 2009; 67 (02) 266-275 , discussion 275–276
  • 34 Toukh M, Siemens DR, Black A. , et al. Thromboelastography identifies hypercoagulablilty and predicts thromboembolic complications in patients with prostate cancer. Thromb Res 2014; 133 (01) 88-95
  • 35 Toh CH, Samis J, Downey C. , et al. Biphasic transmittance waveform in the APTT coagulation assay is due to the formation of a Ca(++)-dependent complex of C-reactive protein with very-low-density lipoprotein and is a novel marker of impending disseminated intravascular coagulation. Blood 2002; 100 (07) 2522-2529
  • 36 Hussain N, Hodson D, Marcus R, Baglin T, Luddington R. The biphasic transmittance waveform: an early marker of sepsis in patients with neutropenia. Thromb Haemost 2008; 100 (01) 146-148
  • 37 Ruberto MF, Sorbello O, Civolani A, Barcellona D, Demelia L, Marongiu F. Clot wave analysis and thromboembolic score in liver cirrhosis: two opposing phenomena. Int J Lab Hematol 2017; 39 (04) 369-374
  • 38 Whiting P, Al M, Westwood M. , et al. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: a systematic review and cost-effectiveness analysis. Health Technol Assess 2015; 19 (58) 1-228 , v–vi
  • 39 Harahsheh Y, Ho KM. Viscoelastic point-of-care testing to guide transfusion and antithrombotic therapy in perioperative and critically ill patients: are all parameters created equal?. Anaesth Intensive Care 2016; 44 (01) 11-13
  • 40 Harahsheh Y, Ho KM. Use of viscoelastic tests to predict clinical thromboembolic events: a systematic review and meta-analysis. Eur J Haematol 2018; 100 (02) 113-123
  • 41 Francis JL, Francis DA, Gunathilagan GJ. Assessment of hypercoagulability in patients with cancer using the Sonoclot Analyzer and thromboelastography. Thromb Res 1994; 74 (04) 335-346
  • 42 Akay OM, Ustuner Z, Canturk Z, Mutlu FS, Gulbas Z. Laboratory investigation of hypercoagulability in cancer patients using rotation thrombelastography. Med Oncol 2009; 26 (03) 358-364
  • 43 Sharma SK, Philip J, Wiley J. Thromboelastographic changes in healthy parturients and postpartum women. Anesth Analg 1997; 85 (01) 94-98
  • 44 Steer PL, Krantz HB. Thromboelastography and Sonoclot analysis in the healthy parturient. J Clin Anesth 1993; 5 (05) 419-424
  • 45 Della Rocca G, Dogareschi T, Cecconet T. , et al. Coagulation assessment in normal pregnancy: thrombelastography with citrated non activated samples. Minerva Anestesiol 2012; 78 (12) 1357-1364
  • 46 Shenaq SA, Saleem A. Viscoelastic measurement of clot formation: the Sonoclot. In: Ellison N, Jobes DR. , eds. Effective Hemostasis in Cardiac Surgery. Philadelphia: WB Saunders; 1988: 183-193
  • 47 Peck SD. Evaluation of the in vitro detection of the hypercoagulable state using the thrombin generation test and plasma clot impedance test. Thromb Haemost 1979; 42 (02) 764-777
  • 48 Kelly DA, Tuddenham EG. Haemostatic problems in liver disease. Gut 1986; 27 (03) 339-349
  • 49 Curry NS, Davenport R, Pavord S. , et al. The use of viscoelastic haemostatic assays in the management of major bleeding: a British Society for Haematology guideline. Br J Haematol 2018; 182 (06) 789-806
  • 50 Davis JPE, Northup PG, Caldwell SH, Intagliata NM. Viscoelastic testing in liver disease. Ann Hepatol 2018; 17 (02) 205-213
  • 51 Collins PW, Macchiavello LI, Lewis SJ. , et al. Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls. Br J Haematol 2006; 135 (02) 220-227
  • 52 Scarlatescu E, Juffermans NP, Thachil J. The current status of viscoelastic testing in septic coagulopathy. Thromb Res 2019; 183: 146-152
  • 53 Durila M, Lukáš P, Astraverkhava M, Beroušek J, Zábrodský M, Vymazal T. Tracheostomy in intensive care unit patients can be performed without bleeding complications in case of normal thromboelastometry results (EXTEM CT) despite increased PT-INR: a prospective pilot study. BMC Anesthesiol 2015; 15: 89
  • 54 Lukas P, Durila M, Jonas J, Vymazal T. Evaluation of thromboelastometry in sepsis in correlation with bleeding during invasive procedures. Clin Appl Thromb Hemost 2018; 24 (06) 993-997
  • 55 Gosselin RC, Estacio EE, Song JY, Dwyre DM. Verifying the performance characteristics of the TEG5000 thromboelastogram in the clinical laboratory. Int J Lab Hematol 2016; 38 (02) 183-192
  • 56 Moore HB, Moore EE, Gonzalez E. , et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg 2014; 77 (06) 811-817 , discussion 817
  • 57 Cardenas JC, Wade CE, Cotton BA. , et al; PROPPR Study Group. TEG lysis shutdown represents coagulopathy in bleeding trauma patients: analysis of the PROPPR cohort. Shock 2019; 51 (03) 273-283
  • 58 Adamzik M, Eggmann M, Frey UH. , et al. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit Care 2010; 14 (05) R178
  • 59 Sivula M, Pettilä V, Niemi TT, Varpula M, Kuitunen AH. Thromboelastometry in patients with severe sepsis and disseminated intravascular coagulation. Blood Coagul Fibrinolysis 2009; 20 (06) 419-426
  • 60 Peng HT, Nascimento B, Beckett A. Thromboelastography and thromboelastometry in assessment of fibrinogen deficiency and prediction for transfusion requirement: a descriptive review. BioMed Res Int 2018; 2018: 7020539
  • 61 Hron G, Kollars M, Binder BR, Eichinger S, Kyrle PA. Identification of patients at low risk for recurrent venous thromboembolism by measuring thrombin generation. JAMA 2006; 296 (04) 397-402
  • 62 Tripodi A, Legnani C, Chantarangkul V, Cosmi B, Palareti G, Mannucci PM. High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism. J Thromb Haemost 2008; 6 (08) 1327-1333
  • 63 Besser M, Baglin C, Luddington R, van Hylckama Vlieg A, Baglin T. High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study. J Thromb Haemost 2008; 6 (10) 1720-1725
  • 64 Faber CG, Lodder J, Kessels F, Troost J. Thrombin generation in platelet-rich plasma as a tool for the detection of hypercoagulability in young stroke patients. Pathophysiol Haemost Thromb 2003; 33 (01) 52-58
  • 65 Carcaillon L, Alhenc-Gelas M, Bejot Y. , et al. Increased thrombin generation is associated with acute ischemic stroke but not with coronary heart disease in the elderly: the Three-City cohort study. Arterioscler Thromb Vasc Biol 2011; 31 (06) 1445-1451
  • 66 Alhenc-Gelas M, Canonico M, Picard V. Influence of natural SERPINC1 mutations on ex vivo thrombin generation. J Thromb Haemost 2010; 8 (04) 845-848
  • 67 Castoldi E, Maurissen LF, Tormene D. , et al. Similar hypercoagulable state and thrombosis risk in type I and type III protein S-deficient individuals from families with mixed type I/III protein S deficiency. Haematologica 2010; 95 (09) 1563-1571
  • 68 Simioni P, Castoldi E, Lunghi B, Tormene D, Rosing J, Bernardi F. An underestimated combination of opposites resulting in enhanced thrombotic tendency. Blood 2005; 106 (07) 2363-2365
  • 69 Castoldi E, Simioni P, Tormene D. , et al. Differential effects of high prothrombin levels on thrombin generation depending on the cause of the hyperprothrombinemia. J Thromb Haemost 2007; 5 (05) 971-979
  • 70 Ay C, Dunkler D, Simanek R. , et al. Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2011; 29 (15) 2099-2103
  • 71 Joly B, Barbay V, Borg JY, Le Cam-Duchez V. Comparison of markers of coagulation activation and thrombin generation test in uncomplicated pregnancies. Thromb Res 2013; 132 (03) 386-391
  • 72 Tripodi A, Branchi A, Chantarangkul V. , et al. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis 2011; 31 (02) 165-172
  • 73 Debaugnies F, Azerad MA, Noubouossié D. , et al. Evaluation of the procoagulant activity in the plasma of cancer patients using a thrombin generation assay. Thromb Res 2010; 126 (06) 531-535
  • 74 Ollivier V, Wang J, Manly D. , et al. Detection of endogenous tissue factor levels in plasma using the calibrated automated thrombogram assay. Thromb Res 2010; 125 (01) 90-96
  • 75 Castoldi E, Rosing J. APC resistance: biological basis and acquired influences. J Thromb Haemost 2010; 8 (03) 445-453
  • 76 Rühl H, Schröder L, Müller J. , et al. Impact of hormone-associated resistance to activated protein C on the thrombotic potential of oral contraceptives: a prospective observational study. PLoS One 2014; 9 (08) e105007
  • 77 Rühl H, Schröder L, Müller J. , et al. Tamoxifen induces resistance to activated protein C. Thromb Res 2014; 133 (05) 886-891
  • 78 Sandset PM, Høibraaten E, Eilertsen AL, Dahm A. Mechanisms of thrombosis related to hormone therapy. Thromb Res 2009; 123 (Suppl. 02) S70-S73
  • 79 Alkema L, Kantorova V, Menozzi C, Biddlecom A. National, regional, and global rates and trends in contraceptive prevalence and unmet need for family planning between 1990 and 2015: a systematic and comprehensive analysis. Lancet 2013; 381 (9878): 1642-1652
  • 80 Christin-Maitre S. History of oral contraceptive drugs and their use worldwide. Best Pract Res Clin Endocrinol Metab 2013; 27 (01) 3-12
  • 81 Sitruk-Ware R, Nath A. Characteristics and metabolic effects of estrogen and progestins contained in oral contraceptive pills. Best Pract Res Clin Endocrinol Metab 2013; 27 (01) 13-24
  • 82 Farris M, Bastianelli C, Rosato E, Brosens I, Benagiano G. Pharmacodynamics of combined estrogen-progestin oral contraceptives: 2. effects on hemostasis. Expert Rev Clin Pharmacol 2017; 10 (10) 1129-1144
  • 83 European Medicines Agency. EMEA/H/A-31/1356–Assessment report for combined hormonal contraceptives containing medicinal products.Available at: https://www.ema.europa.eu/en/documents/referral/combined-hormonal-contraceptives-article-31-referral-prac-assessment-report_en.pdf . Accessed January 2020
  • 84 Wu O, Robertson L, Langhorne P. , et al. Oral contraceptives, hormone replacement therapy, thrombophilias and risk of venous thromboembolism: a systematic review. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) Study. Thromb Haemost 2005; 94 (01) 17-25
  • 85 Hotoleanu C. Genetic risk factors in venous thromboembolism. Adv Exp Med Biol 2017; 906: 253-272
  • 86 Reitsma PH, Versteeg HH, Middeldorp S. Mechanistic view of risk factors for venous thromboembolism. Arterioscler Thromb Vasc Biol 2012; 32 (03) 563-568
  • 87 Kujovich JL. Factor V Leiden thrombophilia. Genet Med 2011; 13 (01) 1-16
  • 88 Cushman M. Inherited risk factors for venous thrombosis. Hematology (Am Soc Hematol Educ Program) 2005; 1: 452-457
  • 89 Kemmeren JM, Algra A, Meijers JC. , et al. Effect of second- and third-generation oral contraceptives on the protein C system in the absence or presence of the factor VLeiden mutation: a randomized trial. Blood 2004; 103 (03) 927-933
  • 90 Mannucci PM, Franchini M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114 (05) 885-889
  • 91 Vandenbroucke JP, Koster T, Briët E, Reitsma PH, Bertina RM, Rosendaal FR. Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation. Lancet 1994; 344 (8935): 1453-1457
  • 92 Vandenbroucke JP, Rosing J, Bloemenkamp KW. , et al. Oral contraceptives and the risk of venous thrombosis. N Engl J Med 2001; 344 (20) 1527-1535
  • 93 Lidegaard Ø, Løkkegaard E, Svendsen AL, Agger C. Hormonal contraception and risk of venous thromboembolism: national follow-up study. BMJ 2009; 339: b2890
  • 94 Westhoff CL, Pike MC, Cremers S, Eisenberger A, Thomassen S, Rosing J. Endogenous thrombin potential changes during the first cycle of oral contraceptive use. Contraception 2017; 95 (05) 456-463
  • 95 Oral Contraceptive and Hemostasis Study Group. The effects of seven monophasic oral contraceptive regimens on hemostatic variables: conclusions from a large randomized multicenter study. Contraception 2003; 67 (03) 173-185
  • 96 Bloemenkamp KW, Rosendaal FR, Helmerhorst FM, Vandenbroucke JP. Higher risk of venous thrombosis during early use of oral contraceptives in women with inherited clotting defects. Arch Intern Med 2000; 160 (01) 49-52
  • 97 Hugon-Rodin J, Horellou MH, Conard J, Gompel A, Plu-Bureau G. Type of combined contraceptives, factor V Leiden mutation and risk of venous thromboembolism. Thromb Haemost 2018; 118 (05) 922-928
  • 98 Henkens CM, Bom VJ, Seinen AJ, van der Meer J. Sensitivity to activated protein C; influence of oral contraceptives and sex. Thromb Haemost 1995; 73 (03) 402-404
  • 99 Curvers J, Thomassen MC, Nicolaes GA. , et al. Acquired APC resistance and oral contraceptives: differences between two functional tests. Br J Haematol 1999; 105 (01) 88-94
  • 100 Alhenc-Gelas M, Plu-Bureau G, Guillonneau S. , et al. Impact of progestagens on activated protein C (APC) resistance among users of oral contraceptives. J Thromb Haemost 2004; 2 (09) 1594-1600
  • 101 Oslakovic S, Zadro R. Comparison of the impact of four generations of progestins on hemostatic variables. Clin Appl Thromb Hemost 2014; 20 (04) 448-455
  • 102 Lancé MD. A general review of major global coagulation assays: thrombelastography, thrombin generation test and clot waveform analysis. Thromb J 2015; 13: 1
  • 103 Sriprasert I, Hodis HN, Bernick B, Mirkin S, Mack WJ. Association of oral estradiol dose/levels with coagulation measures in early/late postmenopausal women. Climacteric 2020; 23: 273-278
  • 104 Sucker C, Tharra K, Litmathe J, Scharf RE, Zotz RB. Rotation thromboelastography (ROTEM) parameters are influenced by age, gender, and oral contraception. Perfusion 2011; 26 (04) 334-340
  • 105 Tans G, van Hylckama Vlieg A, Thomassen MC. , et al. Activated protein C resistance determined with a thrombin generation-based test predicts for venous thrombosis in men and women. Br J Haematol 2003; 122 (03) 465-470
  • 106 Tchaikovski SN, Rosing J. Mechanisms of estrogen-induced venous thromboembolism. Thromb Res 2010; 126 (01) 5-11
  • 107 Foidart JM, Lobo R, Rosing J. , et al. Estetrol (E4) is unique native estrogen that does not modify coagulation markers in postmenopausal women and maintains sensitivity to activated protein C (APC). Paper presented at: 30th Annual Meeting of the North American Menopause Society; September 25–28, 2019; Chicago, IL:
  • 108 Ganter MT, Hofer CK. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth Analg 2008; 106 (05) 1366-1375
  • 109 Afshari A, Wikkelsø A, Brok J, Møller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev 2011; (03) CD007871
  • 110 Haas T, Goobie S, Spielmann N, Weiss M, Schmugge M. Improvements in patient blood management for pediatric craniosynostosis surgery using a ROTEM(®) -assisted strategy - feasibility and costs. Paediatr Anaesth 2014; 24 (07) 774-780
  • 111 Görlinger K, Dirkmann D, Hanke AA. , et al. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology 2011; 115 (06) 1179-1191
  • 112 Lancé MD, Ninivaggi M, Schols SE. , et al. Perioperative dilutional coagulopathy treated with fresh frozen plasma and fibrinogen concentrate: a prospective randomized intervention trial. Vox Sang 2012; 103 (01) 25-34
  • 113 Ay Y, Balkan C, Karapinar DY, Akin M, Bilenoglu B, Kavakli K. Feasibility of using thrombin generation assay (TGA) for monitoring bypassing agent therapy in patients with hemophilia having inhibitors. Clin Appl Thromb Hemost 2013; 19 (04) 389-394
  • 114 Young G, Sørensen B, Dargaud Y, Negrier C, Brummel-Ziedins K, Key NS. Thrombin generation and whole blood viscoelastic assays in the management of hemophilia: current state of art and future perspectives. Blood 2013; 121 (11) 1944-1950
  • 115 Siegemund T, Petros S, Siegemund A, Scholz U, Engelmann L. Thrombin generation in severe haemophilia A and B: the endogenous thrombin potential in platelet-rich plasma. Thromb Haemost 2003; 90 (05) 781-786
  • 116 Al Dieri R, Peyvandi F, Santagostino E. , et al. The thrombogram in rare inherited coagulation disorders: its relation to clinical bleeding. Thromb Haemost 2002; 88 (04) 576-582
  • 117 Nielsen VG, Cohen BM, Cohen E. Effects of coagulation factor deficiency on plasma coagulation kinetics determined via thrombelastography: critical roles of fibrinogen and factors II, VII, X and XII. Acta Anaesthesiol Scand 2005; 49 (02) 222-231
  • 118 Lewis SJ, Stephens E, Florou G. , et al. Measurement of global haemostasis in severe haemophilia A following factor VIII infusion. Br J Haematol 2007; 138 (06) 775-782
  • 119 Livnat T, Martinowitz U, Zivelin A, Rima D, Kenet G. A highly sensitive thrombin generation assay for assessment of recombinant activated factor VII therapy in haemophilia patients with an inhibitor. Thromb Haemost 2011; 105 (04) 688-695
  • 120 Eichinger S, Lubsczyk B, Kollars M. , et al. Thrombin generation in haemophilia A patients with factor VIII inhibitors after infusion of recombinant factor VIIa. Eur J Clin Invest 2009; 39 (08) 707-713
  • 121 Sevenet PO, Depasse F. Clot waveform analysis: Where do we stand in 2017?. Int J Lab Hematol 2017; 39 (06) 561-568
  • 122 Ferrante EA, Blasier KR, Givens TB, Lloyd CA, Fischer TJ, Viola F. A novel device for the evaluation of hemostatic function in critical care settings. Anesth Analg 2016; 123 (06) 1372-1379
  • 123 Lang T, von Depka M. Possibilities and limitations of thrombelastometry/-graphy [in German]. Hamostaseologie 2006; 26 (03) (Suppl. 01) S20-S29
  • 124 Douxfils J, Ageno W, Samama CM. , et al. Laboratory testing in patients treated with direct oral anticoagulants: a practical guide for clinicians. J Thromb Haemost 2018; 16 (02) 209-219
  • 125 Pernod G, Albaladejo P, Godier A. , et al; Working Group on Perioperative Haemostasis. Management of major bleeding complications and emergency surgery in patients on long-term treatment with direct oral anticoagulants, thrombin or factor-Xa inhibitors: proposals of the working group on perioperative haemostasis (GIHP) - March 2013. Arch Cardiovasc Dis 2013; 106 (6–7): 382-393
  • 126 Levy JH, Ageno W, Chan NC, Crowther M, Verhamme P, Weitz JI. ; Subcommittee on Control of Anticoagulation. When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH. J Thromb Haemost 2016; 14 (03) 623-627
  • 127 Martin K, Beyer-Westendorf J, Davidson BL, Huisman MV, Sandset PM, Moll S. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J Thromb Haemost 2016; 14 (06) 1308-1313
  • 128 Seiffge DJ, Traenka C, Polymeris AA. , et al. Intravenous thrombolysis in patients with stroke taking rivaroxaban using drug specific plasma levels: experience with a standard operation procedure in clinical practice. J Stroke 2017; 19 (03) 347-355
  • 129 Seiffge DJ, Kägi G, Michel P. , et al; Novel Oral Anticoagulants in Stroke Patients study group. Rivaroxaban plasma levels in acute ischemic stroke and intracerebral hemorrhage. Ann Neurol 2018; 83 (03) 451-459
  • 130 Gosselin RC, Adcock DM, Bates SM. , et al. International Council for Standardization in Haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost 2018; 118 (03) 437-450
  • 131 Douxfils J, Mullier F, Loosen C, Chatelain C, Chatelain B, Dogné JM. Assessment of the impact of rivaroxaban on coagulation assays: laboratory recommendations for the monitoring of rivaroxaban and review of the literature. Thromb Res 2012; 130 (06) 956-966
  • 132 Douxfils J, Chatelain C, Chatelain B, Dogné JM, Mullier F. Impact of apixaban on routine and specific coagulation assays: a practical laboratory guide. Thromb Haemost 2013; 110 (02) 283-294
  • 133 Douxfils J, Chatelain B, Chatelain C, Dogné JM, Mullier F. Edoxaban: impact on routine and specific coagulation assays. A practical laboratory guide. Thromb Haemost 2016; 115 (02) 368-381
  • 134 Siriez R, Evrard J, Dogné JM. , et al. Betrixaban: impact on routine and specific coagulation assays-a practical laboratory guide. Thromb Haemost 2018; 118 (07) 1203-1214
  • 135 Siriez R, Evrard J, Dogné JM. , et al. Development of new methodologies for the chromogenic estimation of betrixaban concentrations in plasma. Int J Lab Hematol 2019; 41 (02) 250-261
  • 136 Hemker HC, Giesen P, AlDieri R. , et al. The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb 2002; 32 (5–6): 249-253
  • 137 Marlu R, Hodaj E, Paris A, Albaladejo P, Cracowski JL, Pernod G. Effect of non-specific reversal agents on anticoagulant activity of dabigatran and rivaroxaban: a randomised crossover ex vivo study in healthy volunteers. Thromb Haemost 2012; 108 (02) 217-224
  • 138 Douxfils J, Mullier F, Robert S, Chatelain C, Chatelain B, Dogné JM. Impact of dabigatran on a large panel of routine or specific coagulation assays. Laboratory recommendations for monitoring of dabigatran etexilate. Thromb Haemost 2012; 107 (05) 985-997
  • 139 Herrmann R, Thom J, Wood A, Phillips M, Muhammad S, Baker R. Thrombin generation using the calibrated automated thrombinoscope to assess reversibility of dabigatran and rivaroxaban. Thromb Haemost 2014; 111 (05) 989-995
  • 140 Rigano J, Ng C, Nandurkar H, Ho P. Thrombin generation estimates the anticoagulation effect of direct oral anticoagulants with significant interindividual variability observed. Blood Coagul Fibrinolysis 2018; 29 (02) 148-154
  • 141 Bloemen S, Zwaveling S, Douxfils J, Roest M, Kremers R, Mullier F. The anticoagulant effect of dabigatran is reflected in the lag time and time-to-peak, but not in the endogenous thrombin potential or peak, of thrombin generation. Thromb Res 2018; 171: 160-166
  • 142 Chowdary P, Adamidou D, Riddell A. , et al. Thrombin generation assay identifies individual variability in responses to low molecular weight heparin in pregnancy: implications for anticoagulant monitoring. Br J Haematol 2015; 168 (05) 719-727
  • 143 Dale B, Eikelboom JW, Weitz JI. , et al. Dabigatran attenuates thrombin generation to a lesser extent than warfarin: could this explain their differential effects on intracranial hemorrhage and myocardial infarction?. J Thromb Thrombolysis 2013; 35 (02) 295-301
  • 144 Radulovic V, Hyllner M, Ternström L. , et al. Sustained heparin effect contributes to reduced plasma thrombin generation capacity early after cardiac surgery. Thromb Res 2012; 130 (05) 769-774
  • 145 Hacquard M, Perrin J, Lelievre N, Vigneron C, Lecompte T. Inter-individual variability of effect of 7 low molecular weight antithrombin-dependent anticoagulants studied in vitro with calibrated automated thrombography. Thromb Res 2011; 127 (01) 29-34
  • 146 al Dieri R, Alban S, Béguin S, Hemker HC. Thrombin generation for the control of heparin treatment, comparison with the activated partial thromboplastin time. J Thromb Haemost 2004; 2 (08) 1395-1401
  • 147 Robert S, Ghiotto J, Pirotte B. , et al. Is thrombin generation the new rapid, reliable and relevant pharmacological tool for the development of anticoagulant drugs?. Pharmacol Res 2009; 59 (03) 160-166
  • 148 Bloemen S, Hemker HC, Al Dieri R. Large inter-individual variation of the pharmacodynamic effect of anticoagulant drugs on thrombin generation. Haematologica 2013; 98 (04) 549-554
  • 149 Sennesael AL, Larock AS, Douxfils J. , et al. Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J 2018; 16: 28
  • 150 Honickel M, Braunschweig T, Rossaint R, Stoppe C, Ten Cate H, Grottke O. Reversing dabigatran anticoagulation with prothrombin complex concentrate versus idarucizumab as part of multimodal hemostatic intervention in an animal model of polytrauma. Anesthesiology 2017; 127 (05) 852-861
  • 151 Neal MD, Levy JH. precision correction of coagulopathy or prothrombin complex concentrates?: reversal options for dabigatran following trauma. Anesthesiology 2017; 127 (05) 744-746
  • 152 Dargaud Y, Wolberg AS, Luddington R. , et al. Evaluation of a standardized protocol for thrombin generation measurement using the calibrated automated thrombogram: an international multicentre study. Thromb Res 2012; 130 (06) 929-934
  • 153 Dashkevich NM, Vuimo TA, Ovsepyan RA. , et al. Effect of pre-analytical conditions on the thrombodynamics assay. Thromb Res 2014; 133 (03) 472-476
  • 154 Koopman K, Uyttenboogaart M, Hendriks HG. , et al. Thromboelastography in patients with cerebral venous thrombosis. Thromb Res 2009; 124 (02) 185-188
  • 155 O'Donnell J, Riddell A, Owens D. , et al. Role of the thrombelastograph as an adjunctive test in thrombophilia screening. Blood Coagul Fibrinolysis 2004; 15 (03) 207-211
  • 156 Woodle SA, Shibeko AM, Lee TK, Ovanesov MV. Determining the impact of instrument variation and automated software algorithms on the TGT in hemophilia and normalized plasma. Thromb Res 2013; 132 (03) 374-380
  • 157 Loeffen R, Kleinegris MC, Loubele ST. , et al. Preanalytic variables of thrombin generation: towards a standard procedure and validation of the method. J Thromb Haemost 2012; 10 (12) 2544-2554
  • 158 Perrin J, Depasse F, Lecompte T. ; French-speaking CAT group and under the aegis of GEHT; French-speaking CAT group (all in France unless otherwise stated); French-speaking CAT group all in France unless otherwise stated. Large external quality assessment survey on thrombin generation with CAT: further evidence for the usefulness of normalisation with an external reference plasma. Thromb Res 2015; 136 (01) 125-130
  • 159 Siguret V, Abdoul J, Delavenne X. , et al. Rivaroxaban pharmacodynamics in healthy volunteers evaluated with thrombin generation and the active protein C system: modeling and assessing interindividual variability. J Thromb Haemost 2019; 17 (10) 1670-1682
  • 160 Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem 2016; 62 (05) 699-707
  • 161 Rühl H, Müller J, Harbrecht U. , et al. Thrombin inhibition profiles in healthy individuals and thrombophilic patients. Thromb Haemost 2012; 107 (05) 848-853
  • 162 Rühl H, Berens C, Winterhagen A, Müller J, Oldenburg J, Pötzsch B. Label-free kinetic studies of hemostasis-related biomarkers including D-dimer using autologous serum transfusion. PLoS One 2015; 10 (12) e0145012
  • 163 Evans PA, Hawkins K, Lawrence M. , et al. Rheometry and associated techniques for blood coagulation studies. Med Eng Phys 2008; 30 (06) 671-679
  • 164 Ovanesov MV, Ananyeva NM, Panteleev MA, Ataullakhanov FI, Saenko EL. Initiation and propagation of coagulation from tissue factor-bearing cell monolayers to plasma: initiator cells do not regulate spatial growth rate. J Thromb Haemost 2005; 3 (02) 321-331
  • 165 Dashkevich NM, Ovanesov MV, Balandina AN. , et al. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys J 2012; 103 (10) 2233-2240
  • 166 Panteleev MA, Ovanesov MV, Kireev DA. , et al. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophys J 2006; 90 (05) 1489-1500
  • 167 Lipets E, Vlasova O, Urnova E. , et al. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One 2014; 9 (01) e87692
  • 168 Soshitova NP, Karamzin SS, Balandina AN. , et al. Predicting prothrombotic tendencies in sepsis using spatial clot growth dynamics. Blood Coagul Fibrinolysis 2012; 23 (06) 498-507
  • 169 Antovic A. The overall hemostasis potential: a laboratory tool for the investigation of global hemostasis. Semin Thromb Hemost 2010; 36 (07) 772-779
  • 170 Simpson ML, Goldenberg NA, Jacobson LJ, Bombardier CG, Hathaway WE, Manco-Johnson MJ. Simultaneous thrombin and plasmin generation capacities in normal and abnormal states of coagulation and fibrinolysis in children and adults. Thromb Res 2011; 127 (04) 317-323
  • 171 Matsumoto T, Nogami K, Shima M. Simultaneous measurement of thrombin and plasmin generation to assess the interplay between coagulation and fibrinolysis. Thromb Haemost 2013; 110 (04) 761-768
  • 172 Brouns SLN, van Geffen JP, Heemskerk JWM. High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond. Platelets 2018; 29 (07) 662-669
  • 173 Gorog DA, Kovacs IB. Thrombotic status analyser. Measurement of platelet-rich thrombus formation and lysis in native blood. Thromb Haemost 1995; 73 (03) 514-520
  • 174 Suades R, Padró T, Vilahur G, Badimon L. Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thromb Haemost 2012; 108 (06) 1208-1219
  • 175 Shechter M, Merz CN, Paul-Labrador MJ, Kaul S. Blood glucose and platelet-dependent thrombosis in patients with coronary artery disease. J Am Coll Cardiol 2000; 35 (02) 300-307
  • 176 Shima M, Thachil J, Nair SC, Srivastava A. ; Scientific and Standardization Committee. Towards standardization of clot waveform analysis and recommendations for its clinical applications. J Thromb Haemost 2013; 11 (07) 1417-1420
  • 177 Evrard J, Morimont L, Siriez R, De Vriese M, Dogné JM, Douxfils J. Comparison of the effects of DOACs on clot waveform and thrombin generation; Special Issue: Abstracts of the XXVII Congress of the International Society on Thrombosis and Haemostasis, July 6–10, 2019. Res Pract Thromb Haemost 2019; S1: 1-891
  • 178 Dias JD, Norem K, Doorneweerd DD, Thurer RL, Popovsky MA, Omert LA. Use of thromboelastography (TEG) for detection of new oral anticoagulants. Arch Pathol Lab Med 2015; 139 (05) 665-673
  • 179 Seyve L, Richarme C, Polack B, Marlu R. Impact of four direct oral anticoagulants on rotational thromboelastometry (ROTEM). Int J Lab Hematol 2018; 40 (01) 84-93
  • 180 Artang R, Anderson M, Nielsen JD. Fully automated thromboelastograph TEG 6s to measure anticoagulant effects of direct oral anticoagulants in healthy male volunteers. Res Pract Thromb Haemost 2019; 3 (03) 391-396
  • 181 Müller J, Becher T, Braunstein J. , et al. Profiling of active thrombin in human blood by supramolecular complexes. Angew Chem Int Ed Engl 2011; 50 (27) 6075-6078
  • 182 Müller J, Friedrich M, Becher T. , et al. Monitoring of plasma levels of activated protein C using a clinically applicable oligonucleotide-based enzyme capture assay. J Thromb Haemost 2012; 10 (03) 390-398
  • 183 Friedrich MJ, Schmolders J, Rommelspacher Y. , et al. Activity pattern analysis indicates increased but balanced systemic coagulation activity in response to surgical trauma. TH Open 2018; 2 (04) e350-e356
  • 184 Becher T, Müller J, Akin I. , et al. The evolution of activated protein C plasma levels in septic shock and its association with mortality: a prospective observational study. J Crit Care 2018; 47: 41-48
  • 185 Rühl H, Müller J, Wäschenbach J, Oldenburg J, Dewald O, Pötzsch B. Short-term venous stasis induces fibrinolytic activation but not thrombin formation. J Atheroscler Thromb 2014; 21 (12) 1260-1270
  • 186 Rühl H, Winterhagen FI, Berens C, Müller J, Oldenburg J, Pötzsch B. In vivo thrombin generation and subsequent APC formation are increased in factor V Leiden carriers. Blood 2018; 131 (13) 1489-1492
  • 187 Rühl H, Berens C, Winterhagen FI. , et al. Increased activated protein C response rates reduce the thrombotic risk of factor V Leiden carriers but not of prothrombin 20210G>A carriers. Circ Res 2019; 125 (05) 523-534