RSS-Feed abonnieren
DOI: 10.1055/a-1141-3526
Developments in Primary Aldosteronism Subtyping Using Steroid Profiling
Funding: AFT was supported by grants1K08DK109116 from the NIDDK and 2019087 from the Doris Duke Charitable Foundation.Abstract
Adrenal venous sampling is the standard of care for identifying patients with unilateral primary aldosteronism, which is often caused by an aldosterone producing adenoma and can be cured with surgery. The numerous limitations of adrenal venous sampling, including its high cost, scarce availability, technical challenges, and lack of standardized protocols, have driven efforts to develop alternative, non-invasive tools for the diagnosis of aldosterone producing adenomas. Seminal discoveries regarding the pathogenesis of aldosterone producing adenomas made over the past decade have leveraged hypotheses-driven research of steroid phenotypes characteristic of various aldosterone producing adenomas. In parallel, the expanding availability of mass spectrometry has enabled the simultaneous quantitation of many steroids in single assays from small volume biosamples. Steroid profiling has contributed to our evolving understanding about the pathophysiology of primary aldosteronism and its subtypes. Herein, we review the current state of knowledge regarding the application of multi-steroid panels in assisting with primary aldosteronism subtyping.
Publikationsverlauf
Eingereicht: 28. Dezember 2019
Angenommen: 09. März 2020
Artikel online veröffentlicht:
24. April 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1 Hannemann A, Wallaschofski H. Prevalence of primary aldosteronism in patient’s cohorts and in population-based studies−a review of the current literature. Horm Metab Res 2012; 44: 157-162
- 2 Monticone S, Burrello J, Tizzani D. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017; 69: 1811-1820
- 3 Funder JW, Carey RM, Mantero F. et al. The management of primary aldosteronism: Case detection, diagnosis, and treatment: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016; 101: 1889-1916
- 4 Calhoun DA, Nishizaka MK, Zaman MA. et al. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 2002; 40: 892-896
- 5 Douma S, Petidis K, Doumas M. et al. Prevalence of primary hyperaldosteronism in resistant hypertension: A retrospective observational study. Lancet 2008; 371: 1921-1926
- 6 Hundemer GL, Curhan GC, Yozamp N. et al. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: A retrospective cohort study. Lancet Diabetes Endocrinol 2018; 6: 51-59
- 7 Hundemer GL, Curhan GC, Yozamp N. et al. Incidence of atrial fibrillation and mineralocorticoid receptor activity in patients with medically and surgically treated primary aldosteronism. JAMA Cardiol 2018; 3: 768-774
- 8 Mulatero P, Monticone S, Bertello C. et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J Clin Endocrinol Metab 2013; 98: 4826-4833
- 9 Fallo F, Veglio F, Bertello C. et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab 2006; 91: 454-459
- 10 Hundemer GL, Curhan GC, Yozamp N. et al. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension 2018; 72: 658-666
- 11 Rossi GP, Cesari M, Cuspidi C. et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 2013; 62: 62-69
- 12 Iwakura Y, Morimoto R, Kudo M. et al. Predictors of decreasing glomerular filtration rate and prevalence of chronic kidney disease after treatment of primary aldosteronism: Renal outcome of 213 cases. J Clin Endocrinol Metab 2014; 99: 1593-1598
- 13 Williams TA, Lenders JWM, Mulatero P. et al. Primary aldosteronism surgery outcome i. Outcomes after adrenalectomy for unilateral primary aldosteronism: An international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol 2017; 5: 689-699
- 14 Nanba AT, Nanba K, Byrd JB. et al. Discordance between imaging and immunohistochemistry in unilateral primary aldosteronism. Clin Endocrinol 2017; 87: 665-672
- 15 Fassnacht M, Arlt W, Bancos I. et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 2016; 175: G1-G34
- 16 Mantero F, Terzolo M, Arnaldi G. et al. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 2000; 85: 637-644
- 17 Williams TA, Burrello J, Sechi LA. et al. Computed tomography and adrenal venous sampling in the diagnosis of unilateral primary aldosteronism. Hypertension 2018; 72: 641-649
- 18 Lim V, Guo Q, Grant CS. et al. Accuracy of adrenal imaging and adrenal venous sampling in predicting surgical cure of primary aldosteronism. J Clin Endocrinol Metab 2014; 99: 2712-2719
- 19 Young WF, Stanson AW, Thompson GB. et al. Role for adrenal venous sampling in primary aldosteronism. Surgery 2004; 136: 1227-1235
- 20 Kempers MJ, Lenders JW, van Outheusden L. et al. Systematic review: Diagnostic procedures to differentiate unilateral from bilateral adrenal abnormality in primary aldosteronism. Ann Intern Med 2009; 151: 329-337
- 21 Young WF. Diagnosis and treatment of primary aldosteronism: Practical clinical perspectives. J Intern Med 2019; 285: 126-148
- 22 Rossi GP, Auchus RJ, Brown M. et al. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension 2014; 63: 151-160
- 23 Monticone S, Viola A, Rossato D. et al. Adrenal vein sampling in primary aldosteronism: Towards a standardised protocol. Lancet Diabetes Endocrinol 2015; 3: 296-303
- 24 Laurent I, Astere M, Zheng F. et al. Adrenal venous sampling with or without adrenocorticotropic hormone stimulation: A meta-analysis. J Clin Endocrinol Metab 2019; 104: 1060-1068
- 25 Choi M, Scholl UI, Yue P. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331: 768-772
- 26 Azizan EA, Poulsen H, Tuluc P. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013; 45: 1055-1060
- 27 Scholl UI, Goh G, Stolting G. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45: 1050-1054
- 28 Beuschlein F, Boulkroun S, Osswald A. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013; 45: 440-444
- 29 Nanba K, Omata K, Gomez-Sanchez CE. et al. Genetic characteristics of aldosterone-producing adenomas in blacks. Hypertension 2019; 73: 885-892
- 30 Nanba K, Omata K, Else T. et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans. J Clin Endocrinol Metab 2018; 103: 3869-3876
- 31 Monticone S, Castellano I, Versace K. et al. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Molecular and Cellular Endocrinology 2015; 411: 146-154
- 32 Lenzini L, Rossitto G, Maiolino G. et al. A meta-analysis of somatic KCNJ5 K(+) channel mutations in 1636 patients with an aldosterone-producing adenoma. J Clin Endocrinol Metab 2015; 100: E1089-E1095
- 33 Yamazaki Y, Omata K, Tezuka Y. et al. Tumor cell subtypes based on the intracellular hormonal activity in KCNJ5-mutated aldosterone-producing adenoma. Hypertension 2018; 72: 632-640
- 34 Ono Y, Yamazaki Y, Omata K et al. Histological characterization of aldosterone-producing adrenocortical adenomas with different somatic mutations. J Clin Endocrinol Metab 2020; 105: pii: dgz235, DOI: 10.1210/clinem/dgz235
- 35 Kitamoto T, Suematsu S, Yamazaki Y. et al. Clinical and steroidogenic characteristics of aldosterone-producing adenomas with ATPase or CACNA1D gene mutations. J Clin Endocrinol Metab 2016; 101: 494-503
- 36 Inoue K, Yamazaki Y, Kitamoto T. et al. Aldosterone suppression by dexamethasone in patients with KCNJ5-mutated aldosterone-producing adenoma. J Clin Endocrinol Metab 2018; 103: 3477-3485
- 37 Ono Y, Nakamura Y, Maekawa T. et al. Different expression of 11beta-hydroxylase and aldosterone synthase between aldosterone-producing microadenomas and macroadenomas. Hypertension 2014; 64: 438-444
- 38 Tezuka Y, Yamazaki Y, Kitada M. et al. 18-Oxocortisol synthesis in aldosterone-producing adrenocortical adenoma and significance of KCNJ5 mutation status. Hypertension 2019; 73: 1283-1290
- 39 Nakamura Y, Kitada M, Satoh F. et al. Intratumoral heterogeneity of steroidogenesis in aldosterone-producing adenoma revealed by intensive double- and triple-immunostaining for CYP11B2/B1 and CYP17. Mol Cell Endocrinol 2016; 422: 57-63
- 40 Williams TA, Peitzsch M, Dietz AS. et al. Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension 2016; 67: 139-145
- 41 Nanba K, Blinder AR, Rege J. et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension 2020; 75: 645-649
- 42 Wannachalee T, Zhao L, Nanba K. et al. Three discrete patterns of primary aldosteronism lateralization in response to cosyntropin during adrenal vein sampling. J Clin Endocrinol Metab 2019; 104: 5867-5876
- 43 Stowasser M, Bachmann AW, Tunny TJ. et al. Production of 18-oxo-cortisol in subtypes of primary aldosteronism. Clin Exp Pharmacol Physiol 1996; 23: 591-593
- 44 Mosso L, Gomez-Sanchez CE, Foecking MF. et al. Serum 18-hydroxycortisol in primary aldosteronism, hypertension, and normotensives. Hypertension 2001; 38: 688-691
- 45 Gordon RD, Hamlet SM, Tunny TJ. et al. Distinguishing aldosterone-producing adenoma from other forms of hyperaldosteronism and lateralizing the tumour pre-operatively. Clin Exp Pharmacol Physiol 1986; 13: 325-328
- 46 Chu MD, Ulick S. Isolation and identification of 18-hydroxycortisol from the urine of patients with primary aldosteronism. J Biol Chem 1982; 257: 2218-2224
- 47 Ulick S, Blumenfeld JD, Atlas SA. et al. The unique steroidogenesis of the aldosteronoma in the differential diagnosis of primary aldosteronism. J Clin Endocrinol Metab 1993; 76: 873-878
- 48 Hamlet SM, Gordon RD, Gomez-Sanchez CE. et al. Adrenal transitional zone steroids, 18-oxo and 18-hydroxycortisol, useful in the diagnosis of primary aldosteronism, are ACTH-dependent. Clin Exp Pharmacol Physiol 1988; 15: 317-322
- 49 Gomez-Sanchez CE, Montgomery M, Ganguly A. et al. Elevated urinary excretion of 18-oxocortisol in glucocorticoid-suppressible aldosteronism. J Clin Endocrinol Metab 1984; 59: 1022-1024
- 50 Satoh F, Morimoto R, Ono Y. et al. Measurement of peripheral plasma 18-oxocortisol can discriminate unilateral adenoma from bilateral diseases in patients with primary aldosteronism. Hypertension 2015; 65: 1096-1102
- 51 Eisenhofer G, Dekkers T, Peitzsch M. et al. Mass spectrometry-based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin Chem 2016; 62: 514-524
- 52 Zheng FF, Zhu LM, Nie AF. et al. Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma. Hypertension 2015; 65: 622-628
- 53 Taguchi R, Yamada M, Nakajima Y. et al. Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab 2012; 97: 1311-1319
- 54 Akerstrom T, Crona J, Delgado Verdugo A. et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PloS one 2012; 7: e41926
- 55 Boulkroun S, Beuschlein F, Rossi GP. et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension 2012; 59: 592-598
- 56 Azizan EA, Murthy M, Stowasser M. et al. Somatic mutations affecting the selectivity filter of KCNJ5 are frequent in 2 large unselected collections of adrenal aldosteronomas. Hypertension 2012; 59: 587-591
- 57 Monticone S, Hattangady NG, Nishimoto K. et al. Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J Clin Endocrinol Metab 2012; 97: E1567-E1572
- 58 Azizan EA, Lam BY, Newhouse SJ. et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J Clin Endocrinol Metab 2012; 97: E819-E829
- 59 Omata K, Satoh F, Morimoto R. et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 2018; 72: 874-880
- 60 Arlt W, Lang K, Sitch A et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. https://www.ncbi.nlm.nih.gov/pubmed/28422753. JCI Insight 2017; 2: pii: 93136. doi: 10.1172/jci.insight.93136. eCollection 2017 Apr 20
- 61 El Ghorayeb N, Mazzuco TL, Bourdeau I. et al. Basal and Post-ACTH aldosterone and its ratios are useful during adrenal vein sampling in primary aldosteronism. J Clin Endocrinol Metab 2016; 101: 1826-1835
- 62 Takeda M, Yamamoto K, Akasaka H. et al. Clinical characteristics and postoperative outcomes of primary aldosteronism in the elderly. J Clin Endocrinol Metab 2018; 103: 3620-3629
- 63 Wolley MJ, Gordon RD, Ahmed AH. et al. Does contralateral suppression at adrenal venous sampling predict outcome following unilateral adrenalectomy for primary aldosteronism? A retrospective study. J Clin Endocrinol Metab 2015; 100: 1477-1484
- 64 Tagawa M, Ghosn M, Wachtel H. et al. Lateralization index but not contralateral suppression at adrenal vein sampling predicts improvement in blood pressure after adrenalectomy for primary aldosteronism. J Hum Hypertens 2017; 31: 444-449
- 65 Turcu AF, Wannachalee T, Tsodikov A. et al. Comprehensive analysis of steroid biomarkers for guiding primary aldosteronism subtyping. Hypertension 2020; 75: 183-192