CC BY-NC-ND 4.0 · Horm Metab Res 2020; 52(06): 379-385
DOI: 10.1055/a-1120-8647
Review

Angiotensin II Type 1 Receptor Autoantibodies in Primary Aldosteronism

Lucie S. Meyer
1   Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
,
Siyuan Gong
1   Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
,
Martin Reincke
1   Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
,
Tracy Ann Williams
1   Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
2   Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
› Author Affiliations
Funding: M. Reincke is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 694913). T. A. Williams and M. Reincke are supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer: 314061271-TRR 205.

Abstract

Primary aldosteronism (PA) is the most common form of endocrine hypertension. Agonistic autoantibodies against the angiotensin II type 1 receptor (AT1R-Abs) have been described in transplantation medicine and women with pre-eclampsia and more recently in patients with PA. Any functional role of AT1R-Abs in either of the two main subtypes of PA (aldosterone-producing adenoma or bilateral adrenal hyperplasia) requires clarification. In this review, we discuss the studies performed to date on AT1R-Abs in PA.



Publication History

Received: 02 January 2020

Accepted: 12 February 2020

Article published online:
13 March 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Calhoun DA, Nishizaka MK, Zaman MA. et al. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 2002; 40: 892-896
  • 2 Rossi GP, Bernini G, Caliumi C. et al. A prospective study of the prevalence of primary aldosteronism in 1125 hypertensive patients. J Am Coll Cardiol 2006; 48: 2293-2300
  • 3 Monticone S, Burrello J, Tizzani D. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017; 69: 1811-1820
  • 4 Mulatero P, Monticone S, Bertello C. et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J Clin Endocrinol Metab 2013; 98: 4826-4833
  • 5 Savard S, Amar L, Plouin PF. et al. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension 2013; 62: 331-336
  • 6 Catena C, Colussi G, Lapenna R. et al. Long-term cardiac effects of adrenalectomy or mineralocorticoid antagonists in patients with primary aldosteronism. Hypertension 2007; 50: 911-918
  • 7 Zennaro MC, Boulkroun S, Fernandes-Rosa F. Genetic causes of functional adrenocortical adenomas. Endocr Rev 2017; 38: 516-537
  • 8 Prada ETA, Burrello J, Reincke M. et al. Old and new concepts in the molecular pathogenesis of primary aldosteronism. Hypertension 2017; 70: 875-881
  • 9 Wallukat G, Schimke I. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin Immunopathol 2014; 36: 351-363
  • 10 Clark RB. Profile of Brian K. Kobilka and Robert J. Lefkowitz, 2012 Nobel laureates in chemistry. Proc Natl Acad Sci USA 2013; 110: 5274-5275
  • 11 Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009; 459: 356-363
  • 12 Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 2011; 17: 126-139
  • 13 Zhao P, Furness SGB. The nature of efficacy at G protein-coupled receptors. Biochem Pharmacol 2019; 170: 113647
  • 14 Turu G, Balla A, Hunyady L. The Role of beta-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019; 10: 519
  • 15 Maning J, Negussie S, Clark MA. et al. Biased agonism/antagonism at the AngII-AT1 receptor: Implications for adrenal aldosterone production and cardiovascular therapy. Pharmacol Res 2017; 125: 14-20
  • 16 Lefkowitz RJ, Rajagopal K, Whalen EJ. New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 2006; 24: 643-652
  • 17 Li Y, Li XH, Yuan H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc Diagn Ther 2012; 2: 56-62
  • 18 Patel S, Hussain T. Role of AT2R (Angiotensin Type 2 Receptor) in maintaining sodium-potassium balance. Hypertension 2018; 71: 563-565
  • 19 Liles C, Li H, Veitla V. et al. AT2R Autoantibodies Block Angiotensin II and AT1R Autoantibody-Induced Vasoconstriction. Hypertension 2015; 66: 830-835
  • 20 Terenzi R, Manetti M, Rosa I. et al. Angiotensin II type 2 receptor (AT2R) as a novel modulator of inflammation in rheumatoid arthritis synovium. Sci Rep 2017; 7: 13293
  • 21 Levy BI. How to explain the differences between renin angiotensin system modulators. Am J Hypertens 2005; 18: 134s-141s
  • 22 Ludwig RJ, Vanhoorelbeke K, Leypoldt F. et al. Mechanisms of autoantibody-induced pathology. Front Immunol 2017; 8: 603
  • 23 Nagele EP, Han M, Acharya NK. et al. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One 2013; 8: e60726
  • 24 Wallukat G, Homuth V, Fischer T. et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 1999; 103: 945-952
  • 25 Fu ML, Herlitz H, Schulze W. et al. Autoantibodies against the Angiotensin Receptor (AT1) in patients with hypertension. J Hypertens 2000; 18: 945-953
  • 26 Taniguchi M, Rebellato LM, Cai J. et al. Higher risk of kidney graft failure in the presence of anti-angiotensin II type-1 receptor antibodies. Am J Transplant 2013; 13: 2577-2589
  • 27 Reinsmoen NL, Lai CH, Heidecke H. et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation 2010; 90: 1473-1477
  • 28 Banasik M, Boratynska M, Koscielska-Kasprzak K. et al. The influence of non-HLA antibodies directed against angiotensin II type 1 receptor (AT1R) on early renal transplant outcomes. Transpl Int 2014; 27: 1029-1038
  • 29 Dragun D, Muller DN, Brasen JH. et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 2005; 352: 558-569
  • 30 Giral M, Foucher Y, Dufay A. et al. Pretransplant sensitization against angiotensin II type 1 receptor is a risk factor for acute rejection and graft loss. Am J Transplant 2013; 13: 2567-2576
  • 31 Jobert A, Rao N, Deayton S. et al. Angiotensin II type 1 receptor antibody precipitating acute vascular rejection in kidney transplantation. Nephrology (Carlton) 2015; 20 (Suppl. 01) 10-12
  • 32 Hesemann LE, Subramanian V, Mohanakumar T. et al. De novo development of antibodies to kidney-associated self-antigens angiotensin II receptor type I, collagen IV, and fibronectin occurs at early time points after kidney transplantation in children. Pediatr Transplant 2015; 19: 499-503
  • 33 Lee DH, Heidecke H, Schroder A. et al. Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease. Mol Neurodegener 2014; 9: 49
  • 34 Riemekasten G, Philippe A, Nather M. et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis 2011; 70: 530-536
  • 35 Sabbadin C, Ceccato F, Ragazzi E. et al. Evaluation of angiotensin II type-1 receptor antibodies in primary aldosteronism and further considerations about their possible pathogenetic role. J Clin Hypertens (Greenwich) 2018; 20: 1313-1318
  • 36 Lefaucheur C, Viglietti D, Bouatou Y. et al. Non-HLA agonistic anti-angiotensin II type 1 receptor antibodies induce a distinctive phenotype of antibody-mediated rejection in kidney transplant recipients. Kidney Int 2019; 96: 189-201
  • 37 Piazza M, Seccia TM, Caroccia B. et al. AT1AA (Angiotensin II Type-1 Receptor Autoantibodies): Cause or Consequence of Human Primary Aldosteronism?. Hypertension 2019; 74: 793-799
  • 38 Williams TA, Jaquin D, Burrello J. et al. Diverse responses of autoantibodies to the Angiotensin II type 1 receptor in primary aldosteronism. Hypertension 2019; 74: 784-792
  • 39 Kem DC, Li H, Velarde-Miranda C, Liles C. et al. Autoimmune mechanisms activating the angiotensin AT1 receptor in 'primary' aldosteronism. J Clin Endocrinol Metab 2014; 99: 1790-1797
  • 40 Li H, Yu X, Cicala MV. et al. Prevalence of angiotensin II type 1 receptor (AT1R)-activating autoantibodies in primary aldosteronism. J Am Soc Hypertens 2015; 9: 15-20
  • 41 Fox R, Kitt J, Leeson P. et al. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J Clin Med 2019; 8 E1625
  • 42 Zhou CC, Zhang Y, Irani RA. et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med 2008; 14: 855-862
  • 43 Thway TM, Shlykov SG, Day MC. et al. Antibodies from preeclamptic patients stimulate increased intracellular Ca2+ mobilization through angiotensin receptor activation. Circulation 2004; 110: 1612-1619
  • 44 Hubel CA, Wallukat G, Wolf M. et al. Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension 2007; 49: 612-617
  • 45 Siddiqui AH, Irani RA, Blackwell SC. et al. Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia: correlation with disease severity. Hypertension 2010; 55: 386-393
  • 46 Dechend R, Viedt C, Muller DN. et al. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 2003; 107: 1632-1639
  • 47 Yang X, Wang F, Chang H. et al. Autoantibody against AT1 receptor from preeclamptic patients induces vasoconstriction through angiotensin receptor activation. J Hypertens 2008; 26: 1629-1635
  • 48 Wenzel K, Rajakumar A, Haase H. et al. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension 2011; 58: 77-84
  • 49 Leanos-Miranda A, Campos-Galicia I, Alvarez-Jimenez G. et al. Stimulating autoantibodies against the angiotensin II type 1 receptor are not associated with preeclampsia in Mexican-Mestizo women. J Hypertens 2010; 28: 834-841
  • 50 Birukov A, Muijsers HEC, Heidecke H. et al. Regulatory antibodies against GPCR in women ten years after early-onset preeclampsia. Front Biosci (Landmark Ed) 2019; 24: 1462-1476
  • 51 Rossitto G, Regolisti G, Rossi E. et al. Elevation of angiotensin-II type-1-receptor autoantibodies titer in primary aldosteronism as a result of aldosterone-producing adenoma. Hypertension 2013; 61: 526-533
  • 52 Williams TA, Lenders JWM, Mulatero P. et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol 2017; 5: 689-699
  • 53 Dragun D, Catar R, Philippe A. Non-HLA antibodies against endothelial targets bridging allo- and autoimmunity. Kidney Int 2016; 90: 280-288
  • 54 Jahns R, Boege F. Questionable Validity of Peptide-Based ELISA Strategies in the Diagnostics of Cardiopathogenic Autoantibodies That Activate G-Protein-Coupled Receptors. Cardiology 2015; 131: 149-150
  • 55 Wisgerhof M, Carpenter PC, Brown RD. Increased adrenal sensitivity to angiotensin II in idiopathic hyperaldosteronism. J Clin Endocrinol Metab 1978; 47: 938-943
  • 56 Lymperopoulos A, Rengo G, Zincarelli C. et al. Adrenal beta-arrestin 1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels. J Am Coll Cardiol 2011; 57: 356-365
  • 57 Lymperopoulos A, Sturchler E, Bathgate-Siryk A. et al. Different potencies of angiotensin receptor blockers at suppressing adrenal beta-Arrestin1-dependent post-myocardial infarction hyperaldosteronism. J Am Coll Cardiol 2014; 64: 2805-2806