Rofo 2020; 192(08): 764-775
DOI: 10.1055/a-1108-1892
Heart

Diagnosis of Left Ventricular Diastolic Dysfunction Using Cardiac Magnetic Resonance Imaging: Comparison of Volume-Time Curves Derived from Long- and Short-Axis Cine Steady-State Free Precession Datasets

Diagnose der linksventrikulären diastolischen Dysfunktion in der kardialen Magnetresonanztomografie: Vergleich der aus Lang- und Kurzachsen-CINE-SSFP-Sequenzen abgeleiteten Volumen-Zeit-Kurven
Lars-Arne Schaafs
1   Department of Radiology, Charité-Universitätsmedizin Berlin, Germany
,
Sebastian Wyschkon
1   Department of Radiology, Charité-Universitätsmedizin Berlin, Germany
,
Matthias Elgeti
2   Jules-Eye-Stein-Institute, University of California Los Angeles, United States
,
Sebastian Niko Nagel
1   Department of Radiology, Charité-Universitätsmedizin Berlin, Germany
,
Fabian Knebel
3   Department of Cardiology, Charité-Universitätsmedizin Berlin, Germany
,
Ingo G. Steffen
1   Department of Radiology, Charité-Universitätsmedizin Berlin, Germany
,
Marcus R. Makowski
1   Department of Radiology, Charité-Universitätsmedizin Berlin, Germany
,
Bernd Hamm
1   Department of Radiology, Charité-Universitätsmedizin Berlin, Germany
,
Thomas Elgeti
1   Department of Radiology, Charité-Universitätsmedizin Berlin, Germany
4   Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Germany
› Author Affiliations

Abstract

Purpose To evaluate the diagnostic performance of diastolic function parameters derived from long-axis (LAX) planimetry compared with short-axis (SAX) volumetry in cardiac magnetic resonance imaging.

Materials and Methods Cine steady-state free precession (SSFP) datasets of 15 healthy participants (8 young and 7 middle aged) and 25 patients with echocardiographically proven diastolic dysfunction (9 mild, 9 moderate, and 7 severe) were retrospectively included. Volume-time curves for assessing left ventricular (LV) function were obtained by manually contouring the LV endocardial borders in SAX and LAX datasets. The time needed for contouring was recorded for each dataset. The following LV parameters were determined: end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), myocardial mass (MM), time to peak filling rate (TPFR), normalized peak filling rate (nPFR), and the ratio of early to late peak filling rate (E/A ratio). A Wilcoxon signed-rank test was used to compare subgroups based on age and severity of diastolic dysfunction for statistical differences. Intraclass correlation coefficients were used to assess intermethod and interobserver reliability.

Results Accuracy for the diagnosis of diastolic dysfunction was highest for E/A (mild diastolic dysfunction) and nPFR (any stage of diastolic dysfunction) derived from LAX datasets (E/A: area under the curve (AUC) = 0.97, sensitivity of 68 % and specificity of 100 %; nPFR: AUC = 0.84, sensitivity of 84 % and specificity of 80 %). Diastolic parameters showed a moderate to good intraclass correlation between both methods. The mean differences in EDV, ESV, EF, and MM were 5.3 ml, 1.9 ml, 3.5 %, and 11 g, respectively (each p < 0.001). Significantly less time was needed to derive volume-time curves from LAX images (median 14:45 min, interquartile range 14:15–15:53 min versus median 29:25 min, interquartile range 28:12–32:22 min; p = 0.001). The interobserver reliability was generally good to excellent.

Conclusion Diastolic function parameters derived from left ventricular LAX planimetry have high diagnostic performance and can be obtained in significantly less time compared with SAX volumetry. These findings may pave the way for routine use of LAX planimetry in the clinical diagnosis of diastolic dysfunction.

Key points:

  • Diastolic function parameters derived from long-axis datasets have high diagnostic performance.

  • Generation of volume-time curves using long-axis datasets requires significantly less time.

  • This time savings may allow use of cardiac MRI for the diagnosis of diastolic dysfunction in the clinical routine.

Citation Format

  • Schaafs LA, Wyschkon S, Elgeti M et al. Diagnosis of Left Ventricular Diastolic Dysfunction Using Cardiac Magnetic Resonance Imaging: Comparison of Volume-Time Curves Derived from Long- and Short-Axis Cine Steady-State Free Precession Datasets. Fortschr Röntgenstr 2020; 192: 764 – 775

Zusammenfassung

Ziel Vergleich der diagnostischen Genauigkeit von diastolischen Funktionsparametern in der kardialen MRT, die mittels Langachsen (LAX)-Planimetrie bzw. Kurzachsen (SAX) -Volumetrie an Patienten mit diastolischer Dysfunktion erhoben wurden.

Material und Methoden Cine-steady-state-free-precession (SSFP)-Datensätze von 15 gesunden Teilnehmern (8 junge Teilnehmer, 7 Teilnehmer mittleren Alters) sowie 25 Patienten mit echokardiografisch gesicherter diastolischer Dysfunktion (9 mild, 9 moderat und 7 schwer) wurden retrospektiv ausgewertet. Volumen-Zeit-Kurven zur Bewertung der linksventrikulären Funktion wurden nach manuellem Einzeichnen der Endo- bzw. Epikardkontur auf SAX- und LAX-Datensätzen berechnet. Die für jeden Datensatz benötigte Zeit wurde gemessen. Im Anschluss wurden enddiastolisches (EDV) und endsystolisches Volumen (ESV), Ejektionsfraktion (EF), myokardiale Masse (MM), „time-to-peak-fillin-rate“ (TPFR), normalisierte „peak-filling-rate“ (nPFR) und E/A-Verhältnis (E/A) für den linken Ventrikel bestimmt. Unterschiede der Messergebnisse wurden mittels Wilcoxon-Vorzeichen-Rang-Test geprüft. Die Reliabilität zwischen den Auswertern und zwischen beiden Methoden wurde mittels Intra-Klassen-Korrelation gemessen.

Ergebnisse Die höchste diagnostische Genauigkeit wurde mit E/A (Diagnose einer milden diastolischen Dysfunktion) und nPFR (Diagnose einer diastolischen Dysfunktion unabhängig vom Stadium), jeweils generiert aus LAX-Datensätzen, erreicht (E/A: Fläche unter der Kurve = 0,97, 68 % Sensitivität und 100 % Spezifität; nPFR: Fläche unter der Kurve = 0,84, 84 % Sensitivität und 80 % Spezifität). Die diastolischen Funktionsparameter wiesen im Vergleich eine moderate bis gute Intra-Klassen-Korrelation zwischen beiden Methoden auf. Die mittlere Differenz für EDV, ESV, EF und MM betrug 5,3 ml, 1,9 ml, 3,5 % beziehungsweise 11 g (p < 0,001). Die für die Erstellung von Volumen-Zeit-Kurven benötigte Zeit war signifikant kürzer bei der Verwendung von LAX-Datensätzen (Median 14:45 min, Interquartilsabstand 14:15–15:53 min versus median 29:25 min, Interquartilsabstand 28:12–32:22 min; p = 0,001). Die Reliabilität zwischen beiden Auswertern war gut bis exzellent.

Schlussfolgerung Die Planimetrie des linken Ventrikels auf Langachsen ergab diastolische Funktionsparameter mit einer hohen diagnostischen Genauigkeit und kann im Vergleich zur Volumetrie in deutlich kürzerer Zeit durchgeführt werden. Diese Erkenntnisse könnten den Einsatz der MRT zur Routinediagnostik der diastolischen Dysfunktion ermöglichen.

Kernaussagen:

  • Mittels Langachsen-Planimetrie berechnete diastolische Funktionsparameter weisen eine hohe diagnostische Aussagekraft auf.

  • Die Erstellung von Volumen-Zeit-Kurven durch Auswertung von Langachsen-Datensätzen benötigt deutlich weniger Zeit.

  • Diese Zeitersparnis könnte den Einsatz der MRT zur Routinediagnostik der diastolischen Dysfunktion ermöglichen.



Publication History

Received: 11 April 2019

Accepted: 16 January 2020

Article published online:
27 February 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Luetkens J, Petry P, Kuetting D. et al. Left and right ventricular strain in the course of acute myocarditis: a cardiovascular magnetic resonance study. RöFo - Fortschritte Auf Dem Gebiet Der Röntgenstrahlen Und Der Bildgebenden Verfahren 2018; 190: 722-732
  • 2 Petersen SE, Aung N, Sanghvi MM. et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. Journal of Cardiovascular Magnetic Resonance 2017; 19: 18
  • 3 Schulz-Menger J, Bluemke DA, Bremerich J. et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. Journal of cardiovascular magnetic resonance: official journal of the Society for Cardiovascular Magnetic Resonance 2013; 15: 35
  • 4 Bollache E, Redheuil A, Clément-Guinaudeau S. et al. Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography. Journal of Cardiovascular Magnetic Resonance 2010; 12: 63
  • 5 Mendoza DD, Codella NC, Wang Y. et al. Impact of diastolic dysfunction severity on global left ventricular volumetric filling – assessment by automated segmentation of routine cine cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance 2010; 12: 46
  • 6 Caudron J, Fares J, Bauer F. et al. Evaluation of Left Ventricular Diastolic Function with Cardiac MR Imaging. RadioGraphics 2011; 31: 239-259
  • 7 Tao Q, Yan W, Wang Y. et al. Deep Learning–based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study. Radiology 2019; 290: 81-88
  • 8 Wang Y, Zhang Y, Kao E. et al. Fully automatic segmentation of 4D MRI for cardiac functional measurements. Medical Physics 2019; 46: 180-189
  • 9 Nassenstein K, de Greiff A, Hunold P. MR Evaluation of Left Ventricular Volumes and Function: Threshold-Based 3D Segmentation Versus Short-Axis Planimetry. Investigative Radiology 2009; 44: 635-640
  • 10 Daud A, Xu D, Revelo MP. et al. Microvascular Loss and Diastolic Dysfunction in Severe Symptomatic Cardiac Allograft Vasculopathy. Circulation: Heart Failure 2018; 11: e004759
  • 11 Toida T, Toida R, Yamashita R. et al. Grading of Left Ventricular Diastolic Dysfunction with Preserved Systolic Function by the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging Recommendations Contributes to Predicting Cardiovascular Events in Hemodialysis Patients. Cardiorenal Medicine 2019; 9: 190-200
  • 12 Fabiani I, Pugliese N, Carrubba S. et al. Interactive role of diastolic dysfunction and ventricular remodeling in asymptomatic subjects at increased risk of heart failure. The International Journal of Cardiovascular Imaging 2019; 35: 1231-1240
  • 13 Owan TE, Hodge DO, Herges RM. et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine 2006; 355: 251-259
  • 14 Kloch-Badelek M, Kuznetsova T, Sakiewicz W. et al. Prevalence of left ventricular diastolic dysfunction in European populations based on cross-validated diagnostic thresholds. Cardiovascular Ultrasound 2012; 10: 10
  • 15 Kuznetsova T, Herbots L, López B. et al. Prevalence of Left Ventricular Diastolic Dysfunction in a General Population. Circulation: Heart Failure 2009; 2: 105-112
  • 16 Nagueh S, Smiseth O, Appleton C. et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography 2016; 29: 277-314
  • 17 Childs H, Ma L, Ma M. et al. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. Journal of Cardiovascular Magnetic Resonance 2011; 13: 40
  • 18 Abhayaratna WP, Seward JB, Appleton CP. et al. Left Atrial Size Physiologic Determinants and Clinical Applications. Journal of the American College of Cardiology 2006; 47: 2357-2363
  • 19 Lang RM, Bierig M, Devereux RB. et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. Journal of the American Society of Echocardiography 2005; 18: 1440-1463
  • 20 Nagueh SF, Appleton CP, Gillebert TC. et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. Journal of the American Society of Echocardiography 2009; 22: 107-133
  • 21 Wu V, Chyou JY, Chung S. et al. Evaluation of diastolic function by three-dimensional volume tracking of the mitral annulus with cardiovascular magnetic resonance: comparison with tissue Doppler imaging. Journal of Cardiovascular Magnetic Resonance 2014; 16: 71
  • 22 Schoennagel B, Fischer R, Grosse R. et al Diastolische Dysfunktion als frühes Symptom einer Herz-Eisenüberladung mittels MRT. RöFo – Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 2015 187.
  • 23 Zeidan Z, Erbel R, Barkhausen J. et al. Analysis of global systolic and diastolic left ventricular performance using volume-time curves by real-time three-dimensional echocardiography. Journal of the American Society of Echocardiography 2003; 16: 29-37
  • 24 Youden WJ. Index for rating diagnostic tests. Cancer 1949; 3: 32-35
  • 25 Kawaji K, Codella N, Prince MR. et al. Automated Segmentation of Routine Clinical Cardiac Magnetic Resonance Imaging for Assessment of Left Ventricular Diastolic Dysfunction. Circulation: Cardiovascular Imaging 2009; 2: 476-484
  • 26 Duarte R, Fernandez-Perez G, Bettencourt N. et al. Assessment of left ventricular diastolic function with cardiovascular MRI: what radiologists should know. Diagnostic and Interventional Radiology (Ankara, Turkey) 2012; 18: 446-453
  • 27 AlJaroudi WA, Thomas JD, Rodriguez LL. et al. Prognostic Value of Diastolic Dysfunction. Cardiology in Review 2014; 22: 79-90
  • 28 Wan SH, Vogel MW, Chen HH. Pre-Clinical Diastolic Dysfunction. Journal of the American College of Cardiology 2014; 63: 407-416
  • 29 Krishnamurthy R, Pednekar A, Cheong B. et al. High temporal resolution SSFP cine MRI for estimation of left ventricular diastolic parameters. Journal of Magnetic Resonance Imaging 2010; 31: 872-880
  • 30 Theisen D, Sandner TA, Bauner K. et al. Unsupervised Fully Automated Inline Analysis of Global Left Ventricular Function in CINE MR Imaging. Investigative Radiology 2009; 44: 463-468
  • 31 Nassenstein K, de Greiff A, Hunold P. MR Evaluation of Left Ventricular Volumes and Function: Threshold-Based 3D Segmentation Versus Short-Axis Planimetry. Investigative Radiology 2009; 44: 635-640
  • 32 Shahzad R, Tao Q, Dzyubachyk O. et al. Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans. Medical Image Analysis 2017; 39: 44-55
  • 33 Moss AJ, Zareba W, Hall W. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. The New England Journal of Medicine 2002; 346: 877-883
  • 34 Chamsi-Pasha M, Zhan Y, Debs D. et al CMR in the Evaluation of Diastolic Dysfunction and Phenotyping of HFpEF: Current Role and Future Perspectives. JACC Cardiovascular Imaging 2019 [ePub ahead of print]
  • 35 Huttin O, Petit MA, Bozec E. et al. Assessment of Left Ventricular Ejection Fraction Calculation on Long-axis Views From Cardiac Magnetic Resonance Imaging in Patients With Acute Myocardial Infarction. Medicine 2015; 94: e1856