CC BY-NC-ND 4.0 · Sports Med Int Open 2020; 4(01): E19-E26
DOI: 10.1055/a-1101-5750
Training & Testing
Eigentümer und Copyright ©Georg Thieme Verlag KG 2019

Cycling Performance in Short-term Efforts: Laboratory and Field-Based Data in XCO Athletes

Patrick Schneeweiss
1   Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
,
Philipp Schellhorn
1   Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
,
Daniel Haigis
1   Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
,
Andreas Niess
1   Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
,
Peter Martus
2   Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
,
Inga Krauss
1   Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
› Author Affiliations
Acknowledgements: We would like to thank all the volunteers who took part in this study that was supported by the Bundesinstitut für Sportwissenschaft (www.bisp.de) under grant [AZ 072041/16–17]. Furthermore we acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of University of Tübingen.
Further Information

Publication History

received 07 October 2019
revised 16 January 2020

accepted 20 January 2020

Publication Date:
27 March 2020 (online)

Abstract

Mountain bike cross-country Olympic has an intermittent performance profile, underlining the importance of short-term but high cycling power output. Previous findings indicate that power output during sprint tests differs between laboratory and field-based conditions and that cycling cadence rises with increasing workload. The aim was therefore to examine power output and cadence in short-term efforts under laboratory and field conditions. Twenty-three competitive athletes (17.9±3.7 years) performed a laboratory power profile test and a simulated race within one week. Power output and cadence during the power profile test were compared to corresponding short-term efforts during the race over durations of 10–300s (TT10–300). Differences were TT10+8%, TT30+7%, TT60–15% and TT300–12% for power output and+10%,+8%,+19%,+21% for cadence respectively. Compared to the race, we found higher power output during the power profile test for the shorter efforts but lower for TT60 and TT300. Confirming previous results, cadence was higher during the power profile test compared to the respective intervals of the race and increased with increasing workload or shorter time trial duration. Future research should take into account that compared to the field, a higher cadence is used in laboratory settings to produce similar power output.

Supporting Information

 
  • References

  • 1 Union Cycliste. Internationale UCI Cycling Regulations. Part 4. Mountain Bike.; Version on 01.01.2018. 1-70
  • 2 Baron R. Aerobic and anaerobic power characteristics of off-road cyclists. Med Sci Sports Exerc 2001; 33: 1387-1393
  • 3 Impellizzeri FM, Marcora SM. The physiology of mountain biking. Sports Med 2007; 37: 59-71 doi:10.2165/00007256-200737010-00005
  • 4 Inoue A, Sa Filho AS, Mello FC. et al. Relationship between anaerobic cycling tests and mountain bike cross-country performance. J Strength Cond Res 2012; 26: 1589-1593 doi:10.1519/JSC.0b013e318234eb89
  • 5 Stapelfeldt B, Schwirtz A, Schumacher YO. et al. Workload demands in mountain bike racing. Int J Sports Med 2004; 25: 294-300 doi:10.1055/s-2004-819937
  • 6 Theobald U. Leistungsanforderungen und Trainingsmittel in der Radsportdisziplin Mountainbike Cross-Country. Leistungssport 2015; 1: 20-24
  • 7 Allen H, Coggan A. Training and Racing With A Power Meter. Boulder, CO: VeloPress. 2010
  • 8 Stevens CJ, Dascombe BJ. The reliability and validity of protocols for the assessment of endurance sports performance: an updated review. Meas Phys Educ Exerc Sci 2015; 19: 177-185 doi:10.1080/1091367x.2015.1062381
  • 9 Schneeweiss P, Schellhorn P, Haigis D. et al. Predictive Ability of a laboratory performance test in mountain bike cross-country Olympic athletes. Int J Sports Med 2019; 40: 397-403 doi:10.1055/a-0858-9900
  • 10 Coyle EF, Feltner ME, Kautz SA. et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23: 93-107
  • 11 Palmer GS, Dennis SC, Noakes TD. et al. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med 1996; 17: 293-298 doi:10.1055/s-2007-972849
  • 12 Smith MF, Davison RC, Balmer J. et al. Reliability of mean power recorded during indoor and outdoor self-paced 40 km cycling time-trials. Int J Sports Med 2001; 22: 270-274 doi:10.1055/s-2001-13813
  • 13 Quod MJ, Martin DT, Martin JC. et al. The power profile predicts road cycling MMP. Int J Sports Med 2010; 31: 397-401 doi:10.1055/s-0030-1247528
  • 14 Gardner AS, Martin JC, Martin DT. et al. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol 2007; 101: 287-292 doi:10.1007/s00421-007-0498-4
  • 15 Bertucci W, Taiar R, Grappe F. Differences between sprint tests under laboratory and actual cycling conditions. J Sports Med Phys Fitness 2005; 45: 277-283
  • 16 Abbiss CR, Peiffer JJ, Laursen PB. Optimal cadence selection during cycling : Review article. Int SportMed J 2009; 10: 1-15
  • 17 Ansley L, Cangley P. Determinants of optimal cadence during cycling. Eur J Sport Sci 2009; 9: 61-85 doi:10.1080/17461390802684325
  • 18 Hansen EA, Andersen JL, Nielsen JS. et al. Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol Scand 2002; 176: 185-194 doi:10.1046/j.1365-201X.2002.01032.x
  • 19 Vercruyssen F, Hausswirth C, Smith D. et al. Effect of exercise duration on optimal pedaling rate choice in triathletes. Can J Appl Physiol 2001; 26: 44-54
  • 20 Vercruyssen F, Brisswalter J. Which factors determine the freely chosen cadence during submaximal cycling?. J Sci Med Sport 2010; 13: 225-231 doi:10.1016/j.jsams.2008.12.631
  • 21 Hansen EA, Smith G. Factors affecting cadence choice during submaximal cycling and cadence influence on performance. Int J Sports Physiol Perform 2009; 4: 3-17
  • 22 Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London Series B - Biological Sciences 1938; 126: 136-195 doi:10.1098/rspb.1938.0050
  • 23 Foss O, Hallen J. The most economical cadence increases with increasing workload. Eur J Appl Physiol 2004; 92: 443-451 doi:10.1007/s00421-004-1175–5
  • 24 Foss O, Hallen J. Cadence and performance in elite cyclists. Eur J Appl Physiol 2005; 93: 453-462 doi:10.1007/s00421-004-1226-y
  • 25 Coast JR, Cox RH, Welch HG. Optimal pedalling rate in prolonged bouts of cycle ergometry. Med Sci Sports Exerc 1986; 18: 225-230
  • 26 Boning D, Gonen Y, Maassen N. Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 1984; 5: 92-97 doi:10.1055/s-2008-1025887
  • 27 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123
  • 28 Ahrend MD, Schneeweiss P, Martus P. et al. Predictive ability of a comprehensive incremental test in mountain bike marathon. BMJ Open Sport Exerc Med 2018; 4: e000293 doi:10.1136/bmjsem-2017-000293
  • 29 Gardner AS, Stephens S, Martin DT. et al. Accuracy of SRM and power tap power monitoring systems for bicycling. Med Sci Sports Exerc 2004; 36: 1252-1258 doi:10.1249/01.MSS.0000132380.21785.03
  • 30 Paton CD, Hopkins WG. Tests of cycling performance. Sports Med 2001; 31: 489-496 doi:10.2165/00007256-200131070-00004
  • 31 Ghasemi A, Zahediasl S. Normality tests for statistical analysis: A guide for non-statisticians. Int J Endocrinol Metab 2012; 10: 486-489 doi:10.5812/ijem.3505
  • 32 Hinkle DE, Wiersma W, Jurs S. Applied Statistics for the Behavioral Sciences, International Edition. 5th ed. Belmont, CA: Wadsworth; 2009
  • 33 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310 doi:10.1016/S0140-6736(86)90837-8
  • 34 Capelli C, Rittveger J, Bruseghini P. et al. Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes. Eur J Appl Physiol 2016; 116: 1395-1410 doi:10.1007/s00421-016-3396-9
  • 35 Froyd C, Millet GY, Noakes TD. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol 2013; 591: 1339-1346 doi:10.1113/jphysiol.2012.245316
  • 36 Nimmerichter A, Williams CA. Comparison of power output during ergometer and track cycling in adolescent cyclists. J Strength Cond Res 2015; 29: 1049-1056 doi:10.1519/JSC.0000000000000723
  • 37 Jeukendrup AE, Moseley L, Mainwaring GI. et al. Exogenous carbohydrate oxidation during ultraendurance exercise. J Appl Physiol (1985) 2006; 100: 1134-1141 doi:10.1152/japplphysiol.00981.2004
  • 38 Lepers R, Hausswirth C, Maffiuletti N. et al. Evidence of neuromuscular fatigue after prolonged cycling exercise. Med Sci Sports Exerc 2000; 32: 1880-1886
  • 39 Lucia A, Hoyos J, Chicharro JL. Preferred pedalling cadence in professional cycling. Med Sci Sports Exerc 2001; 33: 1361-1366
  • 40 Vogt S, Schumacher YO, Roecker K. et al. Power output during the Tour de France. Int J Sports Med 2007; 28: 756-761 doi:10.1055/s-2007-964982