RSS-Feed abonnieren
DOI: 10.1055/a-1095-1111
Plant Endophytes and Epiphytes: Burgeoning Sources of Known and “Unknown” Cytotoxic and Antibiotic Agents?
Abstract
In the last 20 or so years, the influence of endophytes and, quite recently, epiphytes of plants upon the compounds found in those plants, which were usually assumed to be phytochemicals produced by the plant for a variety of reasons, often as a defense against predators, is becoming more evident, in particular in the case of antitumor agents originally isolated from plant sources, though antibiotic agents might also be found, particularly from epiphytes. In this review, we started with the first report in 1993 of a taxol-producing endophyte and then expanded the compounds discussed to include camptothecin, the vinca alkaloids, podophyllotoxin, and homoharringtonine from endophytic microbes and then the realization that maytansine is not a plant secondary metabolite at all, and that even such a well-studied plant such as Arabidopsis thaliana has a vast repertoire of potential bioactive agents in its leaf epiphytic bacteria. We have taken data from a variety of sources, including a reasonable history of these discoveries that were not given in recent papers by us, nor in other papers covering this topic. The sources included the Scopus database, but we also performed other searches using bibliographic tools, thus, the majority of the papers referenced are the originals, though we note some very recent papers that have built on previous results. We concluded with a discussion of the more modern techniques that can be utilized to “persuade” endophytes and epiphytes to switch on silent biosynthetic pathways and how current analytical techniques may aid in evaluating such programs. We also comment at times on some findings, particularly in the case of homoharringtonine, where there are repetitious data reports differing by a few years claiming the same endophyte as the producer.
# Note: Both authors sequentially retired from the position of Chief of the NCIʼs Natural Products Branch in 2015 and 2004, respectively. They are currently honorary NIH Special Volunteers associated with the Natural Products Branch.
Publikationsverlauf
Eingereicht: 10. Oktober 2019
Angenommen nach Revision: 12. Januar 2020
Artikel online veröffentlicht:
05. Februar 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Stuttgart · New York
-
References
- 1 Nilsson RH, Ryberg M, Abarenkov K, Sjokvist E, Kristiansson E. The ITS region as a target for characterization offungal communities using emerging sequencing technologies. FEMS Microbiol Lett 2009; 296: 97-101
- 2 Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJJ, van Santen JA, Tracanna V, Suarez Duran HG, Andreu VP, Selem-Mojica N, Alanjary M, Robinson SL, Lund G, Epstein SC, Sisto AC, Charkoudian LK, Collemare J, Linington RG, Weber T, Medema MH. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nuc Acids Res 2020; 48: D454-D458
- 3 Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep 2001; 18: 448-459
- 4 Freeman EM, Marshall WH. The seed-fungus of Lolium temulentum, L., the darnel. Phil Trans R Soc Lond B 1904; 196: 1-27
- 5 Petrini AE, Petrini O. Xylarious fungi as endophytes. Sydowia 1985; 38: 216-234
- 6 Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993; 260: 214-216
- 7 Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia . J Nat Prod 1995; 58: 1315-1324
- 8 Cai LY, Shi FX, Gao X. Preliminary phytochemical analysis of Acanthopanan trifoliatus (L.) Merr. J Med Plant Res 2011; 5: 4059-4064
- 9 Kumar NS, Simon N. In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. J Pharmacog Phytochem 2016; 5: 131-133
- 10 Cao H, Ji Y, Li S, Lu L, Tian M, Yang W, Li H. Extensive metabolic profiles of leaves and stems from the medicinal plant Dendrobium officinale Kimura et Migo. Metabolites 2019; 9: 215
- 11 Fuller RW, Cardellina II JH, Kato Y, Brinen LS, Clardy J, Snader KM, Boyd MR. A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J Med Chem 1992; 35: 3007-3011
- 12 Chen L, Yu B, Zhang Y, Gao X, Zhu L, Ma T, Yang H. Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (−)-epicatechin-3-gallate and (−)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator. PLoS One 2015; 10: e0119122
- 13 Nothias LF, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J, Alexandrov T, Litaudon M, Dorrestein PC. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod 2018; 81: 758-767
- 14 Baell JB, Nissink JWM. Seven year itch: Pan-Assay Interference Comounds (PAINS) in 2017 – utility and limitations. ACS Chem Biol 2018; 13: 36-44
- 15 Bisson J, McAlpine JB, Friesen B, Chen SN, Graham J, Pauli GF. Can invalid bioactives undermine natural product-based drug discovery?. J Med Chem 2016; 59: 1671-1690
- 16 Li JY, Sidhu RS, Ford E, Hess WM, Strobel GA. The induction of taxol production in the endophytic fungus – Periconia sp. from Torreya grandifolia . J Ind Microbiol 1998; 20: 259-264
- 17 Heinig U, Scholz S, Jennewein S. Getting to the bottom of taxol biosynthesis by fungi. Fung Div 2013; 60: 161-170
- 18 Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, Qin LP, Han T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit Rev Microbiol 2016; 42: 454-473
- 19 Hao X, Pan J, Zhu X. Taxol Producing Fungi. In: Ramawat K, Merillion JM. eds. Natural Products. Berlin: Springer; 2013: 2797-2812
- 20 Xiong ZQ, Yang YY, Zhao N, Wang Y. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media . BMC Microbiol 2013; 13: 71
- 21 Somjaipeng S, Medina A, Magan N. Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum . Enzyme Micro Technol 2016; 90: 69-75
- 22 Soliman SS, Tsao R, Raizada MN. Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 2011; 74: 2497-2504
- 23 Soliman SSM, Raizada MN. Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host Taxus plants. Front Microbiol 2013; 4: 3
- 24 Soliman SSM, Trobacher CP, Tsao R, Greenwood JS, Raizada MN. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol 2013; 13: 93
- 25 Soliman SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN. An endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol 2015; 25: 2570-2576
- 26 Soliman SSM, Raizada MN. Darkness: a crucial factor in fungal taxol production. Front Microbiol 2018; 9: 353
- 27 Stahlhut R, Park G, Petersen R, Ma W, Hylands P. The occurrence of the anti-cancer diterpene taxol in Podocarpus gracilior Pilger (Podocarpaceae). Biochem Syst Ecol 1999; 27: 613-622
- 28 El-Sayed ASA, Safan S, Mohamed NZ, Shaban L, Ali GS, Sitohy MZ. Induction of taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem 2018; 71: 31-40
- 29 El-Sayed ASA, Mohamed NZ, Safan S, Yassin MA, Shaban L, Shindia AA, Ali GS, Sitohy MZ. Restoring the taxol biosynthetic machinery of Aspergillus terreus by Podocarpus gracilior pilger microbiome, with retrieving the ribosome biogenesis proteins of WD40 superfamily. Sci Rep 2019; 9: 11534
- 30 Ismaiel AA, Ahmed AS, Hassan IA, El-Sayed ER, El-Din AAK. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima . Appl Microbiol Biotech 2017; 101: 5831-5846
- 31 El-Sayed ER, El-Din AAK, Ismaiel AA, Ahmed AS, Hassan IA. Bioprocess optimization using response surface methodology for production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima: Enhanced production by ultraviolet and gamma irradiation. Biocatal Agric Biotechnol 2019; 18: 100996
- 32 Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R, Guo G, Chen L, Zhang Y, Huang X, Tang Q, Liu H, Bellgard MI, Qiu D, Lai J, Hoffman A. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 2014; 15: 69
- 33 Hoffman A, Shahidi F. Paclitaxel and other taxanes in hazelnut. J Funct Foods 2009; 1: 33-37
- 34 El-Sayed ASA, Ali DMJ, Yassin MA, Zayed RA, Ali GS. Sterol inhibitor “Fluconazole” enhance the taxol yield and molecular expression of its encoding genes cluster from Aspergillus flavipes . Process Biochem 2019; 76: 55-67
- 35 Bainier G, Sartory A. Étude dʼune espèce nouvelle de Sterigmatocystis. Sterigmatocystis flavipes (n. sp.). Bull Soc Mycol de France 1911; 27: 90-97
- 36 Kusari S, Singh S, Jayabaskaran C. Rethinking production of Taxol(R) (paclitaxel) using endophyte biotechnology. Trends Biotechnol 2014; 32: 304-311
- 37 Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli . Science 2010; 330: 70-74
- 38 Ding MZ, Yan HF, Li LF, Zhai F, Shang LQ, Yin Z, Yuan YJ. Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One 2014; 9: e109348
- 39 Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnol 2015; 33: 377-383
- 40 Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata . J Am Chem Soc 1966; 88: 3888-3890
- 41 Zhang JL, Sharma PL, Li CJ, Dezube BJ, Pardee AB, Crumpacker CS. Topotecan inhibits human immunodeficiency virus type 1 infection through a topoisomerase-independent mechanism in a cell line with altered topoisomerase I. Antimicrob Agents Chemother 1997; 41: 977-981
- 42 Priel E, Showalter SD, Blair DG. Inhibition of human immunodeficiency virus (HTV-1) replication in vitro by noncytotoxic doses of camptothecin, a topoisomerase I inhibitor. AIDS Res Human Retrovir 2009; 7: 65-72
- 43 Muggia FM, Creaven PJ, Hansen HH, Cohen MH, Selawry OS. Phase I clinical trial of weekly and daily treatments with camptothecin (NSC-100880): correlation with preclinical studies. Cancer Chemother Rep 1972; 56: 515-521
- 44 Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG. Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep 1972; 56: 95-101
- 45 Cragg GM, Newman DJ. A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 2004; 67: 232-244
- 46 Newman DJ, Cragg GM, Kingston DGI. Natural Products as Pharmaceuticals and Sources for Lead Structures. In: Aldous D, Rognan D, Raboisson P, Wermuth C. eds. The Practice of medicinal Chemistry, 4th ed. Amsterdam: Elsevier; 2015: 102-138
- 47 Padmanabha BV, Chandrashekar M, Ramesha BT, Gowda HCH, Gunaga RP, Suhas S, Vasudeva R, Ganeshaiah KN, Shaanker RU. Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham. in the Western Ghats, India: implications for identifying high-yielding sources of the alkaloid. Curr Sci 2006; 90: 95-100
- 48 Sharma S, Rathi N, Kamal B, Pundir D, Kaur B, Arya S. Conservation of biodiversity of highly important medicinal plants of India through tissue culture technology-a review. Agric Biol J N Am 2010; 1: 827-833
- 49 El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J Nat Prod 2014; 77: 193-199
- 50 Shweta S, Shivanna MB, Gurumurthy BR, Shaanker RU, Kumar TRS, Ravikanth G. Inhibition of fungal endophytes by camptothecine produced by their host plant, Nothapodytes nimmoniana (Grahm) Mabb. (Icacinaceae). Curr Sci 2014; 107: 994-1000
- 51 Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomed 2013; 20: 337-342
- 52 Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. App Biochem Microbiol 2008; 44: 203-209
- 53 Kusari S, Zuhlke S, Spiteller M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 2009; 72: 2-7
- 54 Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 2012; 19: 792-798
- 55 Sadre R, Magallanes-Lundback M, Pradhan S, Salim V, Jones AD, DellaPenna D. Metabolite diversity in alkaloid biosynthesis: a multilane (diastereomer) highway for camptothecin synthesis in Camptotheca acuminata . Plant Cell 2016; 28: 1926-1944
- 56 Kusari P, Kusari S, Spiteller M, Kayser O. Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 2015; 99: 5383-5390
- 57 Pu X, Chen F, Yang Y, Qu X, Zhang G, Luo Y. Isolation and characterization of Paenibacillus polymyxa LY214, a camptothecin-producing endophytic bacterium from Camptotheca acuminata . J Ind Microbiol Biotechnol 2015; 42: 1197-1202
- 58 Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 2013; 97: 9365-9375
- 59 Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotech Adv 2015; 33: 873-887
- 60 Venugopalan A, Potunuru UR, Dixit M, Srivastava S. Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani . Biores Technol 2016; 206: 104-111
- 61 Bhalkar BN, Bedekar PA, Patil SM, Patil SA, Govindwar SP. Production of camptothecine using whey by an endophytic fungus: standardization using response surface methodology. RSC Adv 2015; 5: 62828-62835
- 62 Bhalkar BN, Patil SM, Govindwar SP. Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana . Fungal Biol 2016; 120: 873-883
- 63 Soujanya KN, Siva R, Kumara PM, Srimany A, Ravikanth G, Mulani FA, Aarthy T, Thulasiram HV, Santhoshkumar TR, Nataraja KN, Shaanker RU. Camptothecin-producing endophytic bacteria from Pyrenacantha volubilis Hook. (Icacinaceae): A possible role of a plasmid in the production of camptothecin. Phytomed 2017; 36: 160-167
- 64 Gueritte F, Fahy J. The Vinca Alkaloids. In: Cragg GM, Kingston DGI, Newman DJ. eds. Anticancer Agents from natural Sources. Boca Raton, FL: Taylor and Francis; 2005: 123-135
- 65 Zhang LB, Gou LH, Li H, Zeng S, Shao H, Gu S, Wei R. Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce product of therapeutic value. Chin Tradit Herbal Drugs (aka Zongcaoyuo) 2000; 11: 805-807
- 66 Gunatilaka AAL. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 2006; 69: 509-526
- 67 Yang X, Zhang L, Guo B, Guo S. Preliminary study of a vincristine-producing endophytic fungus isolated from leaves of Catharanthus roseus . Chin Tradit Herbal Drugs (aka Zongcaoyuo) 2004; 35: 79-81
- 68 Guo B, Li H, Zhang L. Isolation of an fungus producting vinblastine. J Yunnan Univ Nat Sci 1998; 20: 214-215
- 69 Kumar A, Patil D, Rajamohanan PR, Ahmad A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus . PLoS One 2013; 8: e71805
- 70 Kumar A, Ahmad A. Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus . Biocatal Biotrans 2013; 31: 89-93
- 71 Palem PPC, Kuriakose GC, Jayabaskara C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One 2016; 10: e0144476
- 72 Anjum N, Chandra R. Endophytic bacteria of Catharanthus roseus as an alternative source of vindoline and application of response surface methodology to enhance its production. Arch Biol Sci 2019; 71: 27-38
- 73 Pandey SS, Singh S, Babu CSV, Shanker K, Srivastava NK, Shukla AK, Kalra A. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 2016; 6: 26583
- 74 Podwyssotzki V. Pharmakologische studien über Podophyllum peltatum . Arch Exp Pathol Pharmakol 1880; 13: 29-52
- 75 Borsche W, Niemann J. Über Podophyllin. Justus Liebigs Ann Chem 1932; 494: 126-142
- 76 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
- 77 Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 2006; 122: 494-510
- 78 Liu W, Liu J, Yin D, Zhao X. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle) T.S. Ying. PLoS One 2015; 10: e0122981
- 79 Yang X, Guo S, Zhang L, Shao H. Select of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat Prod Res Dev 2003; 15: 419-422
- 80 Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 2006; 69: 1121-1124
- 81 Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva . World J Microbiol Biotechnol 2008; 24: 1115-1121
- 82 Kusari S, Lamshoft M, Spiteller M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 2009; 107: 1019-1030
- 83 Nadeem M, Ram M, Alam P, Ahmad MM, Mohammad A, Al-Qurainy F, Khan SI, Abdin MZ. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum . African J Microbiol Res 2012; 6: 2493-2499
- 84 Liang Z, Zhang J, Zhang X, Li J, Zhang X, Zhao C. Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. J Chromatog Sci 2016; 54: 175-178
- 85 Arneaud SLB, Porter JR. Investigation and expression of the secoisolariciresinol dehydrogenase gene involved in podophyllotoxin biosynthesis. Mol Biotechnol 2015; 57: 961-973
- 86 Quintás-Cardama A, Cortes J. Homoharringtonine for the treatment of chronic myelogenous leukemia. Expert Opin Pharmacother 2008; 9: 1029-1037
- 87 Kantarjian HM, OʼBrien S, Cortes J. Homoharringtonine/omacetaxine mepesuccinate: the long and winding road to Food and Drug Administration approval. Clin Lymphoma Myeloma Leuk 2013; 13: 530-533
- 88 Perdue jr. RE, Spetzman LA, Rowell RG. Cephalotaxus-source of harringtonine, a promising new anti-cancer alkaloid. Am Horticult Soc 1970; 49: 19-22
- 89 Powell RG, Weisleder D, Smith jr. CR, Rohwedde WK. Structures of harringtonine, isoharringtonine, and homoharringtonine. Tet Lett 1970; 11: 815-818
- 90 Baaske DM, Heinstein P. Biosynthesis; chemistry; mechanisms of action and resistance cytotoxicity and cell cycle specificity of homoharringtonine. Antimicrob Agents Chemother 1977; 12: 298-300
- 91 Whaun JM, Brown ND. Treatment of chloroquine-resistant malaria with esters of cephalotaxine: homoharringtonine. Ann Trop Med Parasitol 1990; 84: 229-237
- 92 Han J. Components analysis of homoharringtonine produced by endophytic fungi strain gyzy-20 and optimization for fermentation condition. J Anhui Agric Sci 2010; 34: 22
- 93 Han J, Zhao J. Isolation and screening of endophytic fungi strains from Cephalotaxus oliveri Mast to produce homoharringtonine. Acta Agriculturae Boreali-Occidentalis Sinica 2010; 10: 24
- 94 Han J, Zhao JH. Isolation and identification of an endophytic homoharringtonine-producing fungi strain gyzy-6 from Cephalotaxus oliveri Mast. Guangdong Agric Sci 2011; 5: 39
- 95 Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, Wu Y, Cai K, Liu Y. Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol 2016; 32: 110
- 96 Liu Y, Liu S, Li Y, Li C. Optimization of homoharringtonine fermentation conditions for Alternaria tenuissima CH1307, an endophytical fungus of Cephalotaxus mannii Hook. f. J Trop Org 2012; 3: 236-242
- 97 Liang S, Wu X, Jin F. Gut-brain psychology: rethinking psychology from the microbiota-gut-brain axis. Front Integr Neurosci 2018; 12: 33
- 98 Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 2013; 64: 807-838
- 99 Etalo DW, Jeon JS, Raaijmakers JM. Modulation of plant chemistry by beneficial root microbiota. Nat Prod Rep 2018; 35: 398-409
- 100 Huang AB, Lin CM, Hamel E. Maytansine inhibits nucleotide binding at the exchangeable site of tubulin. Biochem Biophys Res Comm 1985; 128: 1239-1246
- 101 Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan RF. Tumor inhibitors. LXXIII. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus . J Am Chem Soc 1972; 94: 1354-1356
- 102 Higashide E, Asai M, Ootsu K, Tanida S, Kozai Y, Hasegawa T, Kishi T, Sugino Y, Yoneda M. Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia . Nature 1977; 270: 721-722
- 103 Venghateri JB, Gupta TK, Verma PJ, Kunwar A, Panda D. Ansamitocin P3 depolymerizes microtubules and induces apoptosis by binding to tubulin at the vinblastine site. PLoS One 2013; 8: e75182
- 104 Yu JW, Floss HG, Cragg GM, Newman DJ. Ansamitocins (Maytansenoids). In: Cragg GM, Kingston DGI, Newman DJ. eds. Anticancer Agents from natural Products. 2nd Ed.. Boca Raton, FL: Taylor and Francis; 2012: 407-427
- 105 Wings S, Müller H, Berg G, Lamshöft M, Leistner E. A study of the bacterial community in the root system of the maytansine containing plant Putterlickia verrucosa . Phytochemistry 2013; 91: 158-164
- 106 Kusari S, Lamsho M, Kusari P, Gottfried S, Zuhlke S, Louven K, Hentschel U, Kayser O, Spiteller M. Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 2014; 77: 2577-2584
- 107 Kusari P, Kusari S, Eckelmann D, Zuhlke S, Kayser O, Spiteller M. Cross-species biosynthesis of maytansine in Maytenus serrata . RSC Adv 2016; 6: 10011-10016
- 108 Vorholt JA. Microbial life in the phyllosphere. Nat Revs Micro 2012; 10: 828-840
- 109 Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015; 528: 364-369
- 110 Vorholt JA, Vogel C, Carlstrom CI, Muller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 2017; 22: 142-155
- 111 Helfrich EJN, Vogel CM, Ueoka R, Schäfer M, Ryffel F, Müller DB, Probst S, Kreuzer M, Piel J, Vorholt JA. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nature Microbiol 2018; 3: 909-919
- 112 Zhou X, Huang H, Chen Y, Tan J, Song Y, Zou J, Tian X, Hua Y, Ju J. Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. J Nat Prod 2012; 75: 2251-2255
- 113 Newman DJ. Developing natural product drugs: Supply problems and how they have been overcome. Pharmacol Ther 2016; 162: 1-9
- 114 Seyedsayamdost MR, Traxler MF, Clardy J, Kolter R. Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes. Methods Enzymol 2012; 57: 89-109
- 115 Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Revs Micro 2015; 13: 509-523
- 116 Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U. Elicitation of secondary metabolism in actinomycetes. Biotech Adv 2015; 33: 798-811
- 117 Seyedsayamdost MR. Toward a global picture of bacterial secondary metabolism. J Indust Microbiol Biotech 2019; 46: 301-311
- 118 Adnani N, Ellis GA, Wyche TP, Bugni TS, Kwan JC, Schmidt EW. Emerging Trends for stimulating the Discovery of natural Products. In: Havlíček V, Spížek J. eds. Natural Products Analysis: Instrumentation, Methods, and Applications. New York: John Wiley & Sons; 2014: 115-161
- 119 Duncan KR, Crüsemann M, Lechner A, Sarkar A, Li J, Ziemert N, Wang M, Bandeira N, Moore BS, Dorrestein PC, Jensen PR. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 2015; 22: 460-471
- 120 Luzzatto-Knaan T, Melnik AV, Dorrestein PC. Mass spectrometry tools and workflows for revealing microbial chemistry. Analyst 2015; 140: 4949-4966
- 121 Medema MH, Fischbach MA. Computational approaches to natural product discovery. Nat Chem Biol 2015; 11: 639-648
- 122 Mohimani H, Pevzner PA. Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks. Nat Prod Rep 2016; 33: 73-86
- 123 Oetjen J, Veselkov K, Watrous J, McKenzie JS, Becker M, Hauberg-Lotte L, Kobarg JH, Strittmatter N, Mróz AK, Hoffmann F, Trede D, Palmer A, Schiffler S, Steinhorst K, Aichler M, Goldin R, Guntinas-Lichius O, von Eggeling F, Thiele H, Maedler K, Walch A, Maass P, Dorrestein PC, Takats Z, Alexandrov T. Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry. Gigascience 2015; 4: 20
- 124 Li YF, Tsai KJS, Harvey CJB, Berlew EE, Boehman BL, Findley DM, Friant AG, Gardner CA, Gould MP, Ha JH, Lilley BK, McKinstry EL, Nawal S, Parry RC, Rothchild KW, Silbert SD, Tentilucci MD, Thurston AM, Wai RB, Yoon Y, Aiyar RS, Medema MH, Hillenmeyer ME, Charkoudian LK. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fung Gen Biol 2016; 89: 18-28
- 125 Liu J, Liu G. Analysis of secondary metabolites from plant endophytic fungi. Methods Mol Biol 2018; 1848: 25-38
- 126 Bertrand S, Azzollini A, Schumpp O, Bohni N, Schrenzel J, Monod M, Gindroc K, Wolfender JL. Multi-well fungal co-culture for de novo metabolite-induction in time-series studies based on untargeted metabolomics. Mol Biosyst 2014; 10: 2289-2298
- 127 Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotech Adv 2014; 32: 1180-1204
- 128 Bode E, Brachmann AO, Kegler C, Simsek R, Dauth C, Zhou Q, Kaiser M, Klemmt P, Bode HB. Simple “on-demand” production of bioactive natural products. Chembiochem 2015; 16: 1115-1119
- 129 Chagas FO, Dias LG, Pupo MT. A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol 2013; 39: 1335-1342
- 130 Derewacz DK, Covington BC, McLean JA, Bachman BO. Mapping microbial response metabolomes for induced natural product discovery. ACS Chem Biol 2015; 10: 1998-2006
- 131 Smanski MJ, Schlatter DC, Kinkel LL. Leveraging ecological theory to guide natural product discovery. J Ind Microbiol Biotechnol 2016; 43: 115-128
- 132 Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA. Synthetic biology to access and expand natureʼs chemical diversity. Nat Revs Micro 2016; 14: 135-149
- 133 van der Lee TAJ, Medema MH. Computational strategies for genome-based natural product discovery and engineering in fungi. Fung Gen Biol 2016; 89: 29-36
- 134 Zhang B, Fu Y, Huang C, Zheng C, Wu Z, Zhang W, Yang X, Gong F, Li Y, Chen X, Gao S, Chen X, Li Y, Lu A, Wang Y. New strategy for drug discovery by large-scale association analysis of molecular networks of different species. Sci Rep 2016; 6: 21872
- 135 Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes – a review. Nat Prod Rep 2016; 33: 988-1005
- 136 Zarins-Tutt JS, Barberi TT, Gao H, Mearns-Spragg A, Zhang L, Newman DJ, Goss RJM. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat Prod Rep 2016; 33: 54-72
- 137 Scott TA, Piel J. The hidden enzymology of bacterial natural product biosynthesis. Nature Rev Chem 2019; 3: 404-425
- 138 Florez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 2015; 32: 904-936
- 139 Kieft TL, Simmons KA. Allometry of animal-microbe interactions and global census of animal-associated microbes. Proc R Soc B 2015; 282: 0702
- 140 Hillman K, Goodrich-Blair H. Are you my symbiont? Microbial polymorphic toxins and antimicrobial compounds as honest signals of beneficial symbiotic defensive traits. Curr Opin Microbiol 2016; 31: 184-190