Int J Sports Med 2020; 41(05): 339-344
DOI: 10.1055/a-1088-5279
Genetics & Molecular Biology
© Georg Thieme Verlag KG Stuttgart · New York

Faster and Healthier: Relationship between Telomere and Performance in Master Athletes

Caio Victor Sousa
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
2   Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami FL, USA
,
Samuel Silva Aguiar
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
3   Physical Education Department, University Center UDF, Brasília, Brazil
,
Lysleine Alves Deus
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Lucas Pinheiro Barbosa
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Patrick Anderson dos Santos
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Rodrigo Vanerson Passos Neves
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Larissa Alves Maciel
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Milton Rocha Moraes
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Sérgio Rodrigues Moreira
4   Physical Education, Federal University of Vale do São Francisco (UNIVASF) Brazil, Petrolina, Brazil
,
Carmen Sílvia Grubert Campbell
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Rosangela Vieira Andrade
5   Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia - UCB, Brasília, Brazil
,
Thiago dos Santos Rosa
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
,
1   Graduate Program in Physical Education, Catholic University of Brasilia - UCB, Brasília, Brazil
› Author Affiliations
Funding: This study was funded by Fundação de Apoio à Pesquisa do Distrito Federal (FAP/DF) with grants from: Demanda espontânea (Edital 04/2017). This study was financed in part by the Coordenação de Aperfeiçoamento Pessoal de Nível Superior – Brasil (CAPES) – Finance code 001.
Further Information

Publication History



accepted 16 December 2019

Publication Date:
11 February 2020 (online)

Abstract

Aging is associated with increased oxidative stress, chronic inflammation, and decreased telomere length (TL). However, the lifestyle of master athletes can lead to a reduced risk of these conditions, and thus attenuates aging and performance deterioration. We aimed to analyze the relationships between TL and relative performance (RP), and their relation to adiposity, oxidative stress, and inflammation in endurance (END) and sprint/power (SPW) master athletes (MAs). Twenty-two world-class MAs visited the laboratory for anamnesis, anthropometrics, and blood sampling. Inflammatory and oxidative stress parameters were assessed using commercial kits. Relative TL was determined in leukocytes through qPCR analyses. A positive association was observed between RP and TL in both groups (SPW: r=0.641; END: r=0.685) and the whole sample (r=0.594). The IL6/IL10 ratio presented an inverse correlation with RP in the whole sample (r=–0.580). Body mass index also demonstrated a negative correlation with TL for the END group (r=–0.690) and the whole sample analysis (r=–0.455). Moreover, the IL6/IL10 ratio was negatively associated with strength/power training hours (r=–0.464), whereas the CAT/TBARS ratio was negatively associated with aerobic training hours (r=–0.482). In conclusion, TL of MAs was associated with RP regardless of the training model (endurance or sprint/power), and inflammation and adiposity were associated with shorter telomeres.

 
  • References

  • 1 Conzelmann A. Competitive Sport in the Second Half of Life as Exemplified by Track and Field Master Athletes [In German]. 1st ed. Cologne: Sport und Buch Strauß; 1993
  • 2 Kusy K, Zielinski J. Sprinters versus long-distance runners: How to grow old healthy. Exerc Sport Sci Rev 2015; 43: 57-64 doi:10.1249/JES.0000000000000033
  • 3 Korhonen M, Haverinen M, Degens H. Training and nutritional needs of the masters sprint athlete. In Reaburn P, Ed. Nutrition and Performance in Masters Athletes. 1st Edition. Boca Raton: CRC Press; 2014: 291-321
  • 4 Kettunen JA, Kujala UM, Kaprio J. et al. Health of master track and field athletes: A 16-year follow-up study. Clin J Sport Med 2006; 16: 142-148
  • 5 LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev 2010; 131: 165-167 doi:10.1016/j.mad.2009.12.009
  • 6 Denham J, O'Brien BJ, Prestes PR. et al. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol (1985) 2016; 120: 148-158 doi:10.1152/japplphysiol.00587.2015
  • 7 Simoes HG, Sousa CV, Dos Santos Rosa T. et al. Longer telomere length in elite master sprinters: Relationship to performance and body composition. Int J Sports Med. 2017; 38: 1111-1116
  • 8 Sousa CV, Aguiar SS, Santos PA. et al. Telomere length and redox balance in master endurance runners: The role of nitric oxide. Exp Gerontol. 2019; 117: 113-118
  • 9 Blackburn EH. Structure and function of telomeres. Nature 1991; 350: 569-573 . doi:10.1038/350569a0
  • 10 Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 2015; 350: 1193-1198
  • 11 Ostrander EA, Huson HJ, Ostrander GK. Genetics of athletic performance. Annu Rev Genomics Hum Genet 2009; 10: 407-429 doi:10.1146/annurev-genom-082908-150058
  • 12 Resch M. [The psychological factors affecting athletic performance]. Orv Hetil 2010; 151: 815-821 . doi:10.1556/OH.2010.28890
  • 13 Elliott MC, Wagner PP, Chiu L. Power athletes and distance training: physiological and biomechanical rationale for change. Sports Med 2007; 37: 47-57 doi:10.2165/00007256-200737010-00004
  • 14 Tanaka H, Seals DR. Endurance exercise performance in Masters athletes: age-associated changes and underlying physiological mechanisms. J Physiol 2008; 586: 55-63 . doi:10.1113/jphysiol.2007.141879
  • 15 Mikkelsen UR, Couppe C, Karlsen A. et al. Life-long endurance exercise in humans: circulating levels of inflammatory markers and leg muscle size. Mech Ageing Dev 2013; 134: 531-540 doi:10.1016/j.mad.2013.11.004
  • 16 Barranco-Ruiz Y, Martinez-Amat A, Casals C. et al. A lifelong competitive training practice attenuates age-related lipid peroxidation. J Physiol Biochem 2017; 73: 37-48 doi:10.1007/s13105-016-0522-4
  • 17 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123
  • 18 Aguiar SS, Rosa TS, Sousa CV. et al. Influence of body fat on oxidative stress and telomere length of master athletes. J Strength Cond Res 2019; DOI: 10.1519/JSC.0000000000002932.
  • 19 Neves RVP, Rosa TS, Souza MK. et al. Dynamic, not isometric resistance training improves muscle inflammation, oxidative stress and hypertrophy in rats. Front Physiol 2019; 10: 4
  • 20 Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res 2002; 30: e47-e47
  • 21 de Sousa CV, Sales MM, Rosa TS. et al. The antioxidant effect of exercise: A systematic review and meta-analysis. Sports Med 2017; 47: 277-293 doi:10.1007/s40279-016-0566-1
  • 22 Gleeson M, Bishop NC, Stensel DJ. et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011; 11: 607-615 doi:10.1038/nri3041
  • 23 Supinski GS, Callahan LA. Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol (1985) 2007; 102: 2056-2063 doi:10.1152/japplphysiol.01138.2006
  • 24 Li YP, Lecker SH, Chen Y. et al. TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 2003; 17: 1048-1057 doi:10.1096/fj.02-0759com
  • 25 Taaffe DR, Harris TB, Ferrucci L. et al. Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci 2000; 55: M709-M715
  • 26 Fagan JM, Ganguly M, Tiao G. et al. Sepsis increases oxidatively damaged proteins in skeletal muscle. Arch Surg 1996; 131: 1326-1331 discussion 1331–1322
  • 27 Supinski GS, Callahan LA. Hemin prevents cardiac and diaphragm mitochondrial dysfunction in sepsis. Free Radic Biol Med 2006; 40: 127-137 doi:10.1016/j.freeradbiomed.2005.09.025
  • 28 Shindoh C, Dimarco A, Nethery D. et al. Effect of PEG-superoxide dismutase on the diaphragmatic response to endotoxin. Am Rev Respir Dis 1992; 145: 1350-1354 . doi:10.1164/ajrccm/145.6.1350
  • 29 Van Surell C, Boczkowski J, Pasquier C. et al. Effects of N-acetylcysteine on diaphragmatic function and malondialdehyde content in Escherichia coli endotoxemic rats. Am Rev Respir Dis 1992; 146: 730-734 doi:10.1164/ajrccm/146.3.730
  • 30 Barbieri M, Paolisso G, Kimura M. et al. Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech Ageing Dev 2009; 130: 771-776. doi:10.1016/j.mad.2009.10.002
  • 31 Barbieri M, Ferrucci L, Ragno E. et al. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons. Am J Physiol Endocrinol Metab 2003; 284: E481-E487 . doi:10.1152/ajpendo.00319.2002
  • 32 Musaro A, McCullagh K, Paul A. et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001; 27: 195-200 doi:10.1038/84839
  • 33 Hao ZM, Luo JY, Cheng J. et al. Intensive inhibition of hTERT expression by a ribozyme induces rapid apoptosis of cancer cells through a telomere length-independent pathway. Cancer Biol Ther 2005; 4: 1098-1103
  • 34 Herbert B, Pitts AE, Baker SI. et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci USA 1999; 96: 14276-14281
  • 35 Vaziri H, Benchimol S. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 1996; 31: 295-301
  • 36 Cunha VNC, Dos Santos Rosa T, Sales MM. et al. Training performed above lactate threshold decreases p53 and shelterin expression in mice. Int J Sports Med 2018; 39: 704-711 doi:10.1055/a-0631-3441
  • 37 Rae DE, Vignaud A, Butler-Browne GS. et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol 2010; 109: 323-330 doi:10.1007/s00421-010-1353-6
  • 38 Kadi F, Ponsot E, Piehl-Aulin K. et al. The effects of regular strength training on telomere length in human skeletal muscle. Med Sci Sports Exerc 2008; 40: 82-87 doi:10.1249/mss.0b013e3181596695
  • 39 Korhonen MT, Cristea A, Alen M. et al. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol (1985) 2006; 101: 906-917 doi:10.1152/japplphysiol.00299.2006
  • 40 Drey M, Sieber CC, Degens H. et al. Relation between muscle mass, motor units and type of training in master athletes. Clin Physiol Funct Imaging 2016; 36: 70-76 . doi:10.1111/cpf.12195
  • 41 Korhonen M, Cristea A, Alen M. et al. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol (1985) 2006; 101: 906-917 doi:10.1152/japplphysiol.00299.2006
  • 42 Bano G, Trevisan C, Carraro S. et al. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017; 96: 10-15 doi:10.1016/j.maturitas.2016.11.006
  • 43 Derbre F, Gratas-Delamarche A, Gomez-Cabrera MC. et al. Inactivity-induced oxidative stress: a central role in age-related sarcopenia?. Eur J Sport Sci 2014; 14 Suppl 1 S98-S108 doi:10.1080/17461391.2011.654268
  • 44 Rippberger PL, Emeny RT, Mackenzie TA. et al. The association of sarcopenia, telomere length, and mortality: Data from the NHANES 1999–2002. Eur J Clin Nutr 2018; 72: 255-263 doi:10.1038/s41430-017-0011-z
  • 45 Sardeli AV, Tomeleri CM, Cyrino ES. et al. Effect of resistance training on inflammatory markers of older adults: A meta-analysis. Exp Gerontol 2018; 111: 188-196 . doi:10.1016/j.exger.2018.07.021
  • 46 Vezzoli A, Pugliese L, Marzorati M. et al. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS One 2014; 9: e87506 . doi:10.1371/journal.pone.0087506
  • 47 Park SY, Kwak YS. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J Exerc Rehabil 2016; 12: 113-117 . doi:10.12965/jer.1632598.299
  • 48 Siciliano G, Simoncini C, Lo Gerfo A. et al. Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies. Neuromuscul Disord 2012; 22 Suppl 3 S172-S177 . doi:10.1016/j.nmd.2012.10.005