Rofo 2020; 192(06): 567-575
DOI: 10.1055/a-1088-3537
Pediatric Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Differing Pulmonary Structural Abnormalities Detected on Pulmonary MR Imaging in Cystic Fibrosis Patients with Varying Pancreatic Function

Detektion von unterschiedlichen strukturellen Lungengerüstveränderungen mittels pulmonalem MRT bei Patienten mit zystischer Fibrose und unterschiedlicher Pankreasfunktion
Mareen Sarah Kraus
1   Radiology, Eberhard-Karls-University Tübingen, Tübingen, Germany
,
Matthias Teufel
2   Community practice for Diagnostic Radiology and Nuclear Medicine, Klinikum Schwäbisch Gmünd, Mutlangen, Germany
,
Michael Esser
1   Radiology, Eberhard-Karls-University Tübingen, Tübingen, Germany
,
Lena Sophie Kiefer
1   Radiology, Eberhard-Karls-University Tübingen, Tübingen, Germany
,
Sabrina Fleischer
1   Radiology, Eberhard-Karls-University Tübingen, Tübingen, Germany
,
Ute Graepler-Mainka
1   Radiology, Eberhard-Karls-University Tübingen, Tübingen, Germany
,
Andreas Hector
3   Paediatrics, Eberhard-Karls-University Tübingen, Tübingen, Germany
,
Ilias Tsiflikas
1   Radiology, Eberhard-Karls-University Tübingen, Tübingen, Germany
,
Jürgen F. Schaefer
1   Radiology, Eberhard-Karls-University Tübingen, Tübingen, Germany
› Author Affiliations
Further Information

Publication History

30 July 2019

16 December 2019

Publication Date:
06 February 2020 (online)

Abstract

Purpose In cystic fibrosis (CF) the phenotypic expression of complaints varies widely. Genotypes with sufficient pancreatic function (PS) exhibit milder lung disease compared to CF patients with insufficient pancreatic function (PI). The purpose of this study was to evaluate structural lung disease (SLD) in CF patients with differing pancreatic status but similar results on pulmonary function testing using a pulmonary magnetic resonance imaging score (MR-CF score).

Materials and Methods In this retrospective study, 20 patients in our single-center CF database were included: 10 with PS (mean age 12.5 years; six male; BMI 17.4 kg/m2; FeV1 102 %) were matched by gender, age and lung function with 10 PI patients. Experienced observers semi-quantitatively assessed SLD for each lung lobe. The established MR-CF score measures the extent and the severity of bronchiectasis and bronchial wall thickening, mucus plugging, centrilobular opacity, consolidation, sacculation, and air trapping. The total score and sub-score values were compared to the pancreatic status.

Results Patients with CF-PS had overall statistically significant lower MR-CF scores (p = 0.024), and therefore milder SLD, compared to CF-PI. The differences were most significant for bronchiectasis (p = 0.0042) and air trapping (p = 0.0304). SLD was more severe in the upper lobes in all patients. However, differences between CF-PS and CF-PI patients were present in both the upper and lower lung areas (p = 0.0247 and p = 0.0196, respectively).

Conclusion Our results demonstrated that CF patients with impaired pancreatic function show more severe lung pathology detected by MRI, especially bronchiectasis and air trapping.

Key points:

  • Pulmonary MRI offers morphological and functional details without using ionizing radiation

  • CF patients with pancreatic insufficiency show more severe pulmonary structural impairment

  • Bronchiectasis and air trapping are the most common structural lung changes with predominance in the upper lung lobes.

Citation Format

  • Kraus MS, Teufel M, Esser M et al. Differing Pulmonary Structural Abnormalities Detected on Pulmonary MR Imaging in Cystic Fibrosis Patients with Varying Pancreatic Function. Fortschr Röntgenstr 2020; 192: 567 – 575

Zusammenfassung

Ziel Die Multisystemerkrankung zystische Fibrose (CF) zeigt phänotypisch eine große Symptomvarianz, wobei Genotypen mit suffizienter Pankreasfunktion (PS) eine mildere Lungenbeeinträchtigung aufzuweisen scheinen im Vergleich zu pankreasinsuffizienten (PI) CF-Patienten. Ziel dieser Studie war die Evaluation von strukturellen Lungengerüstveränderungen (SLD) bei CF-Patienten mit unterschiedlicher Pankreasfunktion mittels pulmonalem MRT-Score (MR-CF-Score).

Material und Methoden 20 CF-Patienten wurden in diese retrospektive monozentrische Studie eingeschlossen: 10 PS-CF-Patienten (mittleres Alter 12,5 Jahre; 6 männlich; BMI 17,4 kg/m2; FeV1 102 %) wurden nach Geschlecht, Alter und Lungenfunktion mit 10 PI-Patienten gepaart. Erfahrene Radiologen beurteilten die strukturellen Lungenveränderungen in jedem Lungenlappen mittels semi-quantitativem MR-CF-Score: Dieser beinhaltet Bronchiektasien/peribronchiale Wandverdickung, Mukusverlegung, zentrilobuläre Opazität, Konsolidierung, Sakkulation und Überblähung/Air Trapping. Der Score sowie die kategorischen Werte wurden mit dem Pankreasstatus korreliert.

Ergebnisse CF-PS-Patienten zeigten einen signifikant niedrigeren MR-CF-Gesamtscore (p = 0,024) und damit mildere Lungengerüstveränderungen. Die größten kategorischen Unterschiede waren bezüglich Bronchiektasien (p = 0,0042) und Überblähung (p = 0,0304) zu beobachten. SLD waren insbesondere in den Lungenoberfeldern am deutlichsten, jedoch zeigten sich signifikante Unterschiede in Bezug auf die Pankreasfunktion in sowohl den Lungenober- als auch -unterfeldern (p = 0,0247 und p = 0,0196).

Schlussfolgerung Unsere Ergebnisse zeigen signifikante Unterschiede bezüglich SLD und Pankreasstatus bei CF-Patienten mit identischen Lungenfunktionswerten. Pankreasinsuffiziente Patienten zeigten hierbei deutlich schwerere Lungengerüstveränderungen im MRT, insbesondere Bronchiektasien und Überblähung.

Kernaussagen:

  • Pulmonales MRT ermöglicht eine morphologische und funktionelle Diagnostik ohne Einsatz ionisierender Strahlung.

  • CF-Patienten mit insuffizienter Pankreasfunktion zeigen ausgeprägtere strukturelle Lungengerüstveränderungen im Vergleich zu pankreassuffizienten Patienten bei gleicher Lungenfunktion.

  • Bronchiektasien und Überblähung sind die häufigsten strukturellen Lungengerüstveränderungen mit Betonung der Lungenoberfelder.

 
  • References

  • 1 Lugo-Olivieri CH, Soyer PA, Fishman EK. Cystic fibrosis: spectrum of thoracic and abdominal CT findings in the adult patient. Clin Imaging 1998; 22: 346-354 . doi:S0899-7071(98)00031-X [pii]
  • 2 [Anonym]. In, World Health Organization Genes and Human Disease. http://www.who.int/genomics/public/geneticdiseases/en/index2.html - CF
  • 3 Kerem E, Reisman J, Corey M. et al. Prediction of mortality in patients with cystic fibrosis. N Engl J Med 1992; 326: 1187-1191 . doi:10.1056/nejm199204303261804
  • 4 Elborn JS. Cystic fibrosis. Lancet 2016; 388: 2519-2531 . doi:10.1016/S0140-6736(16)00576-6
  • 5 Quinton PM. Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 2008; 372: 415-417 . doi:10.1016/S0140-6736(08)61162-9
  • 6 Brody AS, Tiddens HA, Castile RG. et al. Computed tomography in the evaluation of cystic fibrosis lung disease. Am J Respir Crit Care Med 2005; 172: 1246-1252 . doi:10.1164/rccm.200503-401PP
  • 7 de Gracia J, Mata F, Alvarez A. et al. Genotype-phenotype correlation for pulmonary function in cystic fibrosis. Thorax 2005; 60: 558-563 . doi:10.1136/thx.2004.031153
  • 8 de Jong PA, Lindblad A, Rubin L. et al. Progression of lung disease on computed tomography and pulmonary function tests in children and adults with cystic fibrosis. Thorax 2006; 61: 80-85 . doi:10.1136/thx.2005.045146
  • 9 Wielputz MO, Puderbach M, Kopp-Schneider A. et al. Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 2014; 189: 956-965 . doi:10.1164/rccm.201309-1659OC
  • 10 Carpio C, Albi G, Rayon-Aledo JC. et al. Changes in structural lung disease in cystic fibrosis children over 4 years as evaluated by high-resolution computed tomography. Eur Radiol 2015; 25: 3577-3585 . doi:10.1007/s00330-015-3782-4
  • 11 Tiddens HA, Rosenow T. What did we learn from two decades of chest computed tomography in cystic fibrosis?. Pediatr Radiol 2014; 44: 1490-1495 . doi:10.1007/s00247-014-2964-6
  • 12 Tiddens HA, Stick SM, Davis S. Multi-modality monitoring of cystic fibrosis lung disease: the role of chest computed tomography. Paediatr Respir Rev 2014; 15: 92-97 . doi:10.1016/j.prrv.2013.05.003
  • 13 Kolodziej M, de Veer MJ, Cholewa M. et al. Lung function imaging methods in Cystic Fibrosis pulmonary disease. Respir Res 2017; 18: 96 . doi:10.1186/s12931-017-0578-x
  • 14 Teufel M, Ketelsen D, Fleischer S. et al. Comparison between high-resolution CT and MRI using a very short echo time in patients with cystic fibrosis with extra focus on mosaic attenuation. Respiration 2013; 86: 302-311 . doi:10.1159/000343085
  • 15 Schaefer JF, Hector A, Schmidt K. et al. A semiquantitative MRI-Score can predict loss of lung function in patients with cystic fibrosis: Preliminary results. Eur Radiol 2017; DOI: 10.1007/s00330-017-4870-4.
  • 16 Dournes G, Menut F, Macey J. et al. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 2016; 26: 3811-3820 . doi:10.1007/s00330-016-4218-5
  • 17 Dournes G, Grodzki D, Macey J. et al. Quiet Submillimeter MR Imaging of the Lung Is Feasible with a PETRA Sequence at 1.5 T. Radiology 2016; 279: 328 . doi:10.1148/radiol.2016164006
  • 18 Altes TA, Meyer CH, Mata JF. et al. Hyperpolarized helium-3 magnetic resonance lung imaging of non-sedated infants and young children: a proof-of-concept study. Clin Imaging 2017; 45: 105-110 . doi:10.1016/j.clinimag.2017.04.004
  • 19 Kuo W, Ciet P, Tiddens HA. et al. Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am J Respir Crit Care Med 2014; 189: 1328-1336 . doi:10.1164/rccm.201311-2099CI
  • 20 Pearce MS, Salotti JA, Little MP. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 2012; 380: 499-505 . doi:10.1016/S0140-6736(12)60815-0
  • 21 Calder AD, Bush A, Brody AS. et al. Scoring of chest CT in children with cystic fibrosis: state of the art. Pediatr Radiol 2014; 44: 1496-1506 . doi:10.1007/s00247-013-2867-y
  • 22 Wielputz MO, von Stackelberg O, Stahl M. et al. Multicentre standardisation of chest MRI as radiation-free outcome measure of lung disease in young children with cystic fibrosis. J Cyst Fibros 2018; 17: 518-527 . doi:10.1016/j.jcf.2018.05.003
  • 23 Schaedel C, de Monestrol I, Hjelte L. et al. Predictors of deterioration of lung function in cystic fibrosis. Pediatr Pulmonol 2002; 33: 483-491 . doi:10.1002/ppul.10100
  • 24 Simanovsky N, Cohen-Cymberknoh M, Shoseyov D. et al. Differences in the pattern of structural abnormalities on CT scan in patients with cystic fibrosis and pancreatic sufficiency or insufficiency. Chest 2013; 144: 208-214 . doi:S0012-3692(13)60469-9 [pii] 10.1378/chest.12-1226
  • 25 Lebenthal E, Rolston DD, Holsclaw DS. et al. Enzyme therapy for pancreatic insufficiency: present status and future needs. Pancreas 1994; 9: 1-12
  • 26 Durno C, Corey M, Zielenski J. et al. Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis. Gastroenterology 2002; 123: 1857-1864 . doi:10.1053/gast.2002.37042
  • 27 Zielenski J. Genotype and phenotype in cystic fibrosis. Respiration 2000; 67: 117-133 . doi:10.1159/000029497
  • 28 Brody AS, Klein JS, Molina PL. et al. High-resolution computed tomography in young patients with cystic fibrosis: distribution of abnormalities and correlation with pulmonary function tests. J Pediatr 2004; 145: 32-38 . doi:10.1016/j.jpeds.2004.02.038
  • 29 Stahl M, Wielputz MO, Graeber SY. et al. Comparison of Lung Clearance Index and Magnetic Resonance Imaging for Assessment of Lung Disease in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2017; 195: 349-359 . doi:10.1164/rccm.201604-0893OC
  • 30 Mall MA, Stahl M, Graeber SY. et al. Early detection and sensitive monitoring of CF lung disease: Prospects of improved and safer imaging. Pediatr Pulmonol 2016; 51: S49-S60 . doi:10.1002/ppul.23537
  • 31 Kraemer R, Blum A, Schibler A. et al. Ventilation inhomogeneities in relation to standard lung function in patients with cystic fibrosis. Am J Respir Crit Care Med 2005; 171: 371-378 . doi:200407-948OC [pii] 10.1164/rccm.200407-948OC