Rofo 2020; 192(06): 549-560
DOI: 10.1055/a-1085-2645
Interventional Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Renal Sympathetic Denervation by Image-Guided Percutaneous Ethanol Injection – Histopathologic Characteristics, Efficacy and Safety

Renale Denervation durch bildgestützte perkutane periarterielle Ethanol-Injektion – histopathologische Charakteristiken, Wirksamkeit und Sicherheit
Patrick Freyhardt
1   University Witten/Herdecke, Faculty of Health, School of Medicine, Witten, Germany
2   Department of Diagnostic and Interventional Radiology, HELIOS Hospital Krefeld, Krefeld, Germany
,
Patrick Haage
3   Department of Diagnostic and Interventional Radiology, HELIOS University Hospital Wuppertal, Wuppertal, Germany
,
Anna Walter
4   Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Berlin, Germany
,
Birgit Aufmesser-Freyhardt
2   Department of Diagnostic and Interventional Radiology, HELIOS Hospital Krefeld, Krefeld, Germany
,
Rolf W. Guenther
4   Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiology, Berlin, Germany
,
Florian Streitparth
5   Department of Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
› Author Affiliations
Further Information

Publication History

19 September 2019

11 December 2019

Publication Date:
28 January 2020 (online)

Abstract

Purpose Evaluation of the efficacy and safety of chemical renal denervation by image-guided periarterial ethanol injection in pigs with emphasis on histopathological characteristics.

Materials and Methods Unilateral renal periarterial ethanol injection under general anesthesia was performed in 16 animals with the contralateral kidney serving as the control. All interventions were performed in an open MRI system under real-time multiplanar guidance. In 10 pigs an ethanol-carbostesin contrast agent mixture was injected with amounts of 5 ml (6 animals, group I) and 10 ml (4 animals, group II). 6 pigs (group III) were treated with 10 ml of an ethanol-polyacrylic (2 %) mixture. Four weeks after treatment, all animals underwent MRI including MRA. After euthanasia, macroscopic and histologic examination of the kidneys, renal arteries and periarterial tissue was performed to assess nerve injury and potential side effects. Furthermore, the norepinephrine concentration (RTNEC) in the renal tissue was determined as a surrogate parameter of efficacy.

Results Histologic signs of nerval degeneration with various degrees of severity and circumferential distribution were found in all groups. Injury depths ranged up to 7.6 mm. In groups II and III the nerve count was significantly lower on the treated side. Renal artery stenosis was not observed in any pig. In all pigs of group II treatment resulted in neural degeneration with a mean RTNEC reduction of 53 % (p < 0.02). In groups I and III significant changes in RTNEC were not observed.

Conclusion Image-guided percutaneous periarterial ethanol injection was efficient and safe for renal denervation. The detected variations in histologic outcome underlined the importance of the preclinical optimization of the technique in order to maximize treatment effects in humans.

Key Points:

  • Renal denervation by percutaneous periarterial ethanol injection is an effective and potentially safe procedure.

  • The percutaneous approach is less prone to anatomical and procedural limitations compared to catheter-based procedures.

  • The achievable nerve injury depth lies beyond those of current RFA-probes.

  • Efficacy depends on amount, concentration, viscosity and periarterial distribution of the ethanol-mixture.

  • Establishing an optimal balance between these parameters is mandatory for a maximum treatment effect at minimum risk for sensitive adjacent structures.

Citation Format

  • Freyhardt P, Haage P, Walter A et al. Renal Sympathetic Denervation by Image-Guided Percutaneous Ethanol Injection – Histopathologic Characteristics, Efficacy and Safety. Fortschr Röntgenstr 2020; 192: 549 – 560

Zusammenfassung

Hintergrund Evaluation von Wirksamkeit und Sicherheit der chemischen renalen Denervation mittels bildgestützter periarterieller Ethanol-Injektion in Schweinen mit Schwerpunkt auf histopathologische Charakteristiken.

Material und Methoden In 16 narkotisierten Schweinen erfolgte eine 1-seitige periarterielle Ethanol-Injektion um eine Nierenarterie. Die unbehandelte Niere diente als Kontrolle. Alle Interventionen erfolgten in einem offenen MRT mit multiplanaren Echtzeit-Sequenzen zur Navigation. 10 Schweinen wurden 5 ml (6 Tiere, Gruppe I), respektive 10 ml (4 Tiere, Gruppe II) eines Ethanol-Carbostesin-Kontrastmittelgemisches injiziert. 6 Tiere (Gruppe III) wurden mit 10 ml eines Ethanol-Polyacryl (2 %) -Gemisches behandelt. 4 Wochen nach der Intervention wurde bei allen Tieren eine MRT-Untersuchung mit MRA durchgeführt. Nach erfolgter Euthanasie wurden eine makroskopische und histologische Untersuchung der Nieren, der Nierenarterien sowie des angrenzenden Bindegewebes zum Nachweis induzierter Nervendegenerationen und potenzieller Nebeneffekte durchgeführt. Als Surrogatparameter für die Wirksamkeit wurde die Noradrenalin-Konzentration des Nierengewebes (RTNEC) bestimmt.

Ergebnisse In den Präparaten aller Gruppen fanden sich histologische Zeichen einer periarteriellen Nervenschädigung unterschiedlicher Ausprägung und zirkumferentieller Verteilung. Die maximale Distanz geschädigter Nerven zur Gefäßintima betrug 7,6 mm. In den Gruppen II und III zeigte sich die Nervenanzahl auf der behandelten Seite signifikant reduziert im Vergleich zur Gegenseite. Nierenarterienstenosen fanden sich bei keinem Versuchstier. In Gruppe II wiesen alle Tiere einen signifikanten RTNEC-Abfall mit einer mittleren Reduktion von 53 % (p < 0,02) auf der behandelten Seite auf. In den Gruppen I und III wurde keine signifikante Veränderung der RTNEC beobachtet.

Schlussfolgerung Die bildgestützte, perkutane periarterielle Ethanol-Injektion zur renalen Denervation erwies sich als wirksam und sicher. Die beobachteten Variationen in der Ausprägung der induzierten histopathologischen Veränderungen unterstreichen die Notwendigkeit einer Optimierung der Technik mit dem Ziel eines maximalen Behandlungseffekts im Menschen.

Kernaussagen:

  • Die renale Denervation durch perkutane periarterielle Ethanolinjektion ist eine effektive und potenziell sichere Prozedur.

  • Der perkutane Zugang hat weniger anatomische und prozedurale Limitationen als endovaskuläre Verfahren.

  • Die erzielbare Tiefe der Nervenschädigung ist größer als bei gängigen RFA-Elektroden.

  • Die Wirksamkeit ist abhängig von Menge, Konzentration, Viskosität und periarterieller Verteilung des Ethanolgemischs.

  • Eine optimale Balance zwischen diesen Parametern ist entscheidend für eine maximale Effektivität bei minimalem Risiko.

 
  • References

  • 1 Krum H, Schlaich M, Whitbourn R. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373: 1275-1281
  • 2 Townsend RR, Mahfoud F, Kandzari DE. et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390: 2160-2170
  • 3 Azizi M, Schmieder RE, Mahfoud F. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 2018; 391: 2335-2345
  • 4 Kandzari DE, Bohm M, Mahfoud F. et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 2018; 391: 2346-2355
  • 5 Schonherr E, Rehwald R, Nasseri P. et al. Retrospective morphometric study of the suitability of renal arteries for renal denervation according to the Symplicity HTN2 trial criteria. BMJ Open 2016; 6: e009351
  • 6 Versaci F, Trivisonno A, Olivieri C. et al. Late renal artery stenosis after renal denervation: is it the tip of the iceberg?. International journal of cardiology 2014; 172: e507-e508
  • 7 Pappaccogli M, Covella M, Berra E. et al. Effectiveness of Renal Denervation in Resistant Hypertension: A Meta-Analysis of 11 Controlled Studies. High Blood Press Cardiovasc Prev 2018; DOI: 10.1007/s40292-018-0260-5.
  • 8 Streitparth F, Walter A, Stolzenburg N. et al. MR-guided Periarterial Ethanol Injection for Renal Sympathetic Denervation: A Feasibility Study in Pigs. Cardiovascular and interventional radiology 2013; DOI: 10.1007/s00270-013-0570-x.
  • 9 Fischell TA, Fischell DR, Ghazarossian VE. et al. Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter. Cardiovasc Revasc Med 2015; DOI: 10.1016/j.carrev.2015.04.008.
  • 10 Freyhardt P, Schutze J, Donners R. et al. Renal Denervation by Transaortic Periarterial Ethanol Injection: An Experimental Study in Porcines. Cardiovascular and interventional radiology 2018; 41: 1943-1951
  • 11 Streitparth F, Gebauer B, Nickel P. et al. Percutaneous computer tomography-guided ethanol sympathicolysis for the treatment of resistant arterial hypertension. Cardiovascular and interventional radiology 2014; 37: 513-518
  • 12 Ricke J, Seidensticker M, Becker S. et al. Renal Sympathetic Denervation by CT-Guided Ethanol Injection: A Phase II Pilot Trial of a Novel Technique. Cardiovascular and interventional radiology 2016; 39: 251-260
  • 13 Swindle MM. Comparative anatomy and physiology of the pig. Scand J Lab Anim Sci Suppl 1998; 25: 1-10
  • 14 Sakakura K, Ladich E, Edelman ER. et al. Methodological standardization for the pre-clinical evaluation of renal sympathetic denervation. JACC Cardiovascular interventions 2014; 7: 1184-1193
  • 15 Bauch HJ, Kelsch U, Hauss WH. A single, rapid, selective and quantitative determination of adrenaline and noradrenaline in the plasma by a combination of solvent extraction, HPLC separation and electrochemical detection. Journal of clinical chemistry and clinical biochemistry Zeitschrift fur klinische Chemie und klinische Biochemie 1986; 24: 651-658
  • 16 Bhatt DL, Kandzari DE, O’Neill WW. et al. A Controlled Trial of Renal Denervation for Resistant Hypertension. The New England journal of medicine 2014; DOI: 10.1056/NEJMoa1402670.
  • 17 Azizi M, Sapoval M, Gosse P. et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 2015; 385: 1957-1965
  • 18 Coppolino G, Pisano A, Rivoli L. et al. Renal denervation for resistant hypertension. Cochrane Database Syst Rev 2017; 2: CD011499
  • 19 Fischell TA, Vega F, Raju N. et al. Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 2013; 9: 140-147
  • 20 Freyhardt P, Donners R, Riemert A. et al. Renal denervation by CT-guided periarterial injection of hyperosmolar saline, vincristine, paclitaxel and guanethidine in a pig model. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 2017; 12: e2262-e2270
  • 21 Firouznia K, Hosseininasab SJ, Amanpour S. et al. Renal Sympathetic Denervation by CT-scan-Guided Periarterial Ethanol Injection in Sheep. Cardiovascular and interventional radiology 2015; 38: 977-984
  • 22 Fengler K, Ewen S, Hollriegel R. et al Blood Pressure Response to Main Renal Artery and Combined Main Renal Artery Plus Branch Renal Denervation in Patients With Resistant Hypertension. J Am Heart Assoc 2017; 6: e006196 doi:10.1161/JAHA.117.006196
  • 23 Pekarskiy SE, Baev AE, Mordovin VF. et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. Journal of hypertension 2017; 35: 369-375
  • 24 Tzafriri AR, Mahfoud F, Keating JH. et al. Innervation patterns may limit response to endovascular renal denervation. Journal of the American College of Cardiology 2014; 64: 1079-1087
  • 25 Tzafriri AR, Mahfoud F, Keating JH. et al. Procedural and Anatomical Determinants of Multielectrode Renal Denervation Efficacy. Hypertension 2019; DOI: 10.1161/HYPERTENSIONAHA.119.12918: HYPERTENSIONAHA11912918.
  • 26 Sakaoka A, Terao H, Nakamura S. et al. Accurate Depth of Radiofrequency-Induced Lesions in Renal Sympathetic Denervation Based on a Fine Histological Sectioning Approach in a Porcine Model. Circulation Cardiovascular interventions 2018; 11: e005779
  • 27 Bertog S, Fischel TA, Vega F. et al. Randomised, blinded and controlled comparative study of chemical and radiofrequency-based renal denervation in a porcine model. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 2017; 12: e1898-e1906
  • 28 Vink EE, Goldschmeding R, Vink A. et al. Limited destruction of renal nerves after catheter-based renal denervation: results of a human case study. Nephrol Dial Transplant 2014; 29: 1608-1610
  • 29 Al Raisi SI, Pouliopoulos J, Barry MT. et al. Evaluation of lesion and thermodynamic characteristics of Symplicity and EnligHTN renal denervation systems in a phantom renal artery model. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 2014; 10: 277-284
  • 30 Hannon JP, Bossone CA, Wade CE. Normal physiological values for conscious pigs used in biomedical research. Lab Anim Sci 1990; 40: 293-298