RSS-Feed abonnieren
DOI: 10.1055/a-1083-8923
Der Riesenzelltumor des Knochens – neue Aspekte, neue Probleme
Giant Cell Tumor of Bone – new aspects, new problemsZusammenfassung
Für keinen anderen primären Tumor des Knochens wurden in den letzten Jahren so bahnbrechende Erkenntnisse erlangt, die direkt in die tägliche Diagnostik und klinische Anwendung umgesetzt werden konnten, wie für den Riesenzelltumor des Knochens (RZTK). Zum einen erhielt die Beschreibung der für diese Tumorentität hochcharakteristischen Histonmutation im H3F3A-Gen und der daraus resultierenden Veränderung im Histon 3.3 diagnostische Bedeutung. Diese Erkenntnisse sind heute etablierte Bestandteile in der Diagnostik. Zum anderen stellt sich die RANK-RANKL-Achse als wesentlicher Mechanismus dar, der mittels des monoklonalen Antikörpers Denosumab therapeutisch blockiert werden kann. Die daraus abgeleiteten therapeutischen Konsequenzen werden teils kontrovers diskutiert. Im Folgenden sollen diese Aspekte vor dem Hintergrund der aktuellen Literatur reflektiert werden.
Publikationsverlauf
Artikel online veröffentlicht:
25. Februar 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Athanasou NA, Bansal M, Forsyth R. Giant Cell Tumor of Bone. In: CDM F, JA B, PCW H. et al., eds. WHO Classification of Tumours of Soft Tissue and Bone. vol. 2017. Lyon France: IARC Press; 2013: 4 p.
- 2 van der Heijden L, Dijkstra PDS, MAJ VDS. et al. The clinical approach toward giant cell tumor of bone. Oncologist. 2014; May; 19 (05) 550-561
- 3 Turcotte RE. Giant cell tumor of bone. Orthop Clin North Am. 2006; Jan; 37 (01) 35-51
- 4 Mavrogenis AF, Igoumenou VG, Megaloikonomos PD. et al. Giant cell tumor of bone revisited. [cited 2019 Nov 19]; 3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598212/
- 5 Aponte-Tinao LA, Piuzzi NS, Roitman P. et al. A High-grade Sarcoma Arising in a Patient With Recurrent Benign Giant Cell Tumor of the Proximal Tibia While Receiving Treatment With Denosumab. Clin Orthop Relat Res. 2015; Sep; 473 (09) 3050-3055
- 6 Brien EW, Mirra JM, Kessler SR. et al. Benign giant cell tumor of bone with osteosarcomatous transformation (”dedifferentiated” primary malignant GCT): report of two cases. 1997 26. : 246-255.
- 7 Horvai A, Unni KK. Premalignant conditions of bone. 2006; Jul 1 [cited 2019 Nov 19]; J Orthop Sci. 11 (04) 412-423. Available from. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780648/
- 8 Chakarun CJ, Forrester DM, Gottsegen CJ. et al. Giant cell tumor of bone: Review, mimics, and new developments in treatment. Radiographics. 2013; 33 (01) 197-211
- 9 Mavrogenis AF, Angelini A, Errani C. et al. How should musculoskeletal biopsies be performed?. 2014; [cited 2019 Nov 19]; Orthopedics. 37 (09) 585-588. Available from:. https://moh-it.pure.elsevier.com/en/publications/how-should-musculoskeletal-biopsies-be-performed.
- 10 Cowan RW, Singh G. Giant cell tumor of bone: A basic science perspective. Bone. 2013; Jan; 52 (01) 238-246
- 11 Behjati S, Tarpey PS, Presneau N. et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet. 2013; Dec; 45 (12) 1479-1482
- 12 Lüke J, von Baer A, Schreiber J. et al. H3F3A mutation in giant cell tumour of the bone is detected by immunohistochemistry using a monoclonal antibody against the G34 W mutated site of the histone H3.3 variant. Histopathology. 2017; Jul; 71 (01) 125-133
- 13 Lübbehüsen C, Lüke J, Seeling C. et al. Characterization of Three Novel H3F3A-mutated Giant Cell Tumor Cell Lines and Targeting of Their Wee1 Pathway. Sci Rep. 2019; Apr 23; 9 (01) 6458
- 14 Koelsche C, Schrimpf D, Tharun L. et al. Histone 3.3 hotspot mutations in conventional osteosarcomas: A comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clin Sarcoma Res. 2017 7. (9).
- 15 Sobti A, Agrawal P, Agarwala S. Giant Cell Tumor of Bone – An Overview. Arch Bone Jt Surg. 2016; Jan; 4 (01): 2-9. Available from:. https://www.ncbi.nlm.nih.gov/pubmed/26894211
- 16 Balke M, Schremper L, Gebert C. et al. Giant cell tumor of bone: Treatment and outcome of 214 cases. J Cancer Res Clin Oncol. 2008; Sep; 134 (09) 969-978
- 17 Errani C, Ruggieri P, Asenzio MAN. et al. Giant cell tumor of the extremity: A review of 349 cases from a single institution. Cancer Treat Rev. 2010; Feb; 36 (01) 1-7
- 18 Kivioja AH, Blomqvist C, Hietaniemi K. et al. Cement is recommended in intralesional surgery of giant cell tumors: A Scandinavian Sarcoma Group study of 294 patients followed for a median time of 5 years. Acta Orthop. 2008; Feb; 79 (01) 86-93
- 19 Chawla S, Henshaw R, Seeger L. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: Interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013; Aug; 14 (09) 901-908
- 20 Feigenberg SJ, Jr RB M, Zlotecki RA. et al. Radiation therapy for giant cell tumors of bone. Clin Orthop Relat Res. 2003; Jun (411) 207-216
- 21 Hofbauer LC, Khosla S, Dunstan CR. et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000; Jan; 15 (01) 2-12
- 22 Ikebuchi Y, Aoki S, Honma M. et al. Coupling of bone resorption and formation by RANKL reverse signalling. 2018; Sep; 561 (7722): Nature. 195-200. Available from:. https://www.ncbi.nlm.nih.gov/pubmed/30185903
- 23 Roux S, Amazit L, Meduri G. et al. RANK (receptor activator of nuclear factor kappa B) and RANK ligand are expressed in giant cell tumors of bone. Am J Clin Pathol. 2002; Feb; 117 (02) 210-216
- 24 Dougall WC, Holen I, González Suárez E. Targeting RANKL in metastasis. Bonekey Rep. 2014; 3 : 519
- 25 Bender S, Tang Y, Lindroth AM. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27 M mutant pediatric high-grade gliomas. Cancer Cell 2013; Nov 11; 24 (05) 660-672
- 26 Li G-M. Decoding the histone code: Role of H3K36me3 in mismatch repair and implications for cancer susceptibility and therapy. Cancer Res. 2013; Nov 1; 73 (21) 6379-6383
- 27 Lewis PW, Müller MM, Koletsky MS. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013; May 17; 340 (6134): 857-861
- 28 Cleven AHG, Höcker S, Briaire-de Bruijn I. et al. Mutation Analysis of H3F3A and H3F3B as a Diagnostic Tool for Giant Cell Tumor of Bone and Chondroblastoma. Am J Surg Pathol. 2015; Nov; 39 (11) 1576-1583
- 29 Lim J, Park JH, Baude A. et al. The histone variant H3.3 G34 W substitution in giant cell tumor of the bone link chromatin and RNA processing. Sci Rep. 2017; Oct 18 [cited 2019 Nov 18]; 7 (01) 1-14. Available from:. https://www.nature.com/articles/s41598-017-13887-y
- 30 Fellenberg J, Sähr H, Mancarella D. et al. Knock-down of oncohistone H3F3A-G34 W counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells. Cancer Lett. 2019; Apr; 28 (448) 61-69
- 31 Lau CPY, Kwok JSL, Tsui JCC. et al. Genome-Wide Transcriptome Profiling of the Neoplastic Giant Cell Tumor of Bone Stromal Cells by RNA Sequencing. J Cell Biochem. 2017; 118 (06) 1349-1360
- 32 Liu C, Tang Y, Li M. et al. Clinical characteristics and prognoses of six patients with multicentric giant cell tumor of the bone. Oncotarget. 2016; Dec 13; 7 (50) 83795-83805
- 33 Yang Y, Li Y, Liu W. et al. A nonrandomized controlled study of sacral giant cell tumors with preoperative treatment of denosumab. Medicine (Baltimore). 2018; Nov; 97 (46) e13139
- 34 Errani C, Tsukamoto S, Mavrogenis AF. How safe and effective is denosumab for bone giant cell tumour?. Int Orthop. 2017; 41 (11) 2397-2400
- 35 https://www.ema.europa.eu/en/documents/product-information/xgeva-epar-product-information_de.pdf
- 36 https://www.pei.de/SharedDocs/Downloads/DE/newsroom/veroeffentlichungen-arzneimittel/rhb/12-09-03-rhb-xgeva.pdf?__blob = publicationFile&v = 2
- 37 https://www.pei.de/SharedDocs/Downloads/DE/newsroom/veroeffentlichungen-arzneimittel/rhb/15-07-30-rhb-xgeva.pdf?__blob = publicationFile&v = 2
- 38 https://www.pei.de/SharedDocs/Downloads/DE/newsroom/veroeffentlichungen-arzneimittel/anhaenge-am-sik-infos/2018-05-16-informationsbrief-xgeva.pdf?__blob = publicationFile&v = 2
- 39 Rutkowski P, Ferrari S, Grimer RJ. et al. Surgical downstaging in an open-label phase II trial of denosumab in patients with giant cell tumor of bone. Ann Surg Oncol. 2015; Sep; 22 (09) 2860-2868
- 40 Park A, Cipriano CA, Hill K. et al. Malignant Transformation of a Giant Cell Tumor of Bone Treated with Denosumab: A Case Report. JBJS Case Connect. 2016; 6 (03) e78
- 41 Tsukamoto S, Righi A, Vanel D. Development of high-grade osteosarcoma in a patient with recurrent giant cell tumor of the ischium while receiving treatment with denosumab. Jpn J Clin Oncol. 2017; Nov 1; 47 (11) 1090-1096.
- 42 Criscitiello C, Viale G, Gelao L. et al. Crosstalk between bone niche and immune system: Osteoimmunology signaling as a potential target for cancer treatment. Cancer Treat Rev. 2015; Feb; 41 (02) 61-68
- 43 Mukaihara K, Suehara Y, Kohsaka S. et al. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab. PLoS One. 2016; [cited 2019 Nov 20]; 11 (02) e0148401. Available from:. https://journals.plos.org/plosone/article?id = 10.1371/journal.pone.0148401
- 44 Mak IWY, Evaniew N, Popovic S. et al. A Translational Study of the Neoplastic Cells of Giant Cell Tumor of Bone Following Neoadjuvant Denosumab. J Bone Joint Surg Am. 2014; Aug 6; 96 (15) e127.