Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2020; 30(04): 199-205
DOI: 10.1055/a-1023-4582
Review

The Efficacy of Whole-Body Vibration for Functional Improvement of Stroke Patients: A Meta-Analysis of Randomized Controlled Trials

Die Wirksamkeit von Ganzkörpervibrationen auf die Funktionsverbesserung bei Schlaganfallpatienten: eine Meta-Analyse von randomisierten kontrollierten Studien
Lin Yue
1   Department of Emergency, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, Zhejiang, P. R. China
,
Linglong Chen
1   Department of Emergency, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, Zhejiang, P. R. China
,
Rongrong Zhou
2   Medical Skill Training Center, Wenzhou People’s Hospital, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, Zhejiang, P. R. China
› Institutsangaben

Abstract

The efficacy of whole-body vibration for functional improvement in stroke patients remains controversial. We conduct a systematic review and meta-analysis to explore the influence of whole-body vibration on functional improvement in stroke patients.

We search PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through June 2018 for randomized controlled trials (RCTs) assessing the effect of whole-body vibration on functional improvement in stroke patients. This meta-analysis is performed using the random-effect model.

Eight RCTs are included in the meta-analysis. Overall, compared with control group for stroke patients, whole-body vibration has no positive impact on 6 min walk test (6MWT) distance (standard mean difference (Std. MD)=−0.28; 95% confidence interval (CI)=−0.66 to 0.11; P=0.16), timed-up-and-go (TUG) test (Std. MD=0.15; 95% CI=−0.54 to 0.84; P=0.67), Fugl-Meyer assessment (Std. MD=0.33; 95% CI=−0.23 to 0.89; P=0.25), Berg Balance Scale (Std. MD=0.19; 95% CI=−0.43 to 0.80; P=0.55), and activities specific balance (ABC) scale (Std. MD=−0.22; 95% CI=−0.62 to 0.17; P=0.26).

Whole-body vibration shows no notable influence on 6MWT distance, TUG test, Fugl-Meyer assessment, Berg Balance Scale, and ABC scale in stroke patients.

Zusammenfassung

Die Wirksamkeit von Ganzkörpervibrationen auf die Funktionsverbesserung bei Schlaganfallpatienten bleibt umstritten. Wir führen eine systematische Literaturübersicht und Meta-Analyse durch, um die Wirkung von Ganzkörpervibrationen auf die Funktionsverbesserung bei Schlaganfallpatienten zu untersuchen. Die Recherche wurde im Juni 2018 in PubMed, Embase, Web of science, EBSCO, und den Cochrane library Datenbanken durchgeführt. Eingeschlossen waren insgesamt acht randomisierte kontrollierte Studien (RCT), in denen die Wirkung von Ganzkörpervibrationen auf die Funktionsverbesserung bei Schlaganfallpatienten untersucht wurden. Diese Meta-Analyse wurde unter Anwendung des random-effect Modells durchgeführt. Insgesamt haben Ganzkörpervibrationen im Vergleich zur Kontrollgruppe bei Schlaganfallpatienten keine positive Wirkung auf den 6-Minuten-Gehtest (6MWT), die Distanz (standard mean difference (Std. MD)=-0,28; 95% Konfidenzintervall (CI)=-0,66 bis 0,11; P=0,16), den timed-up-and-go (TUG) Test (Std. MD=0,15; 95% CI=-0,54 bis 0,84; P=0,67), das Fugl-Meyer-Assessment (Std. MD=0,33; 95% CI=-0,23 bis 0,89; P=0,25), die Berg-Balance-Skala (Std. MD=0,19; 95% CI=-0,43 bis 0,80; P=0,55), und die Activities-Specific Balance Confidence (ABC) Skala (Std. MD=- 0,22; 95% CI=-0,62 bis 0,17; P=0,26). Ganzkörpervibrationen zeigten keinen nennenswerten Einfluss auf den 6-Minuten-Gehtest, TUG test, Fugl-Meyer-Assessment, Berg-Balance-Skala, and ABC-Skala bei Schlaganfallpatienten.



Publikationsverlauf

Eingereicht: 11. Juni 2019

Angenommen: 17. September 2019

Artikel online veröffentlicht:
23. Januar 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Fuentes B, Tejedor ED. Stroke: The worldwide burden of stroke–a blurred photograph. Nature Reviews Neurology 2014; 10: 127-128
  • 2 Chiumente M, Gianino MM, Minniti D. et al. Burden of stroke in Italy: An economic model highlights savings arising from reduced disability following thrombolysis. International Journal of Stroke : Official Journal of the International Stroke Society 2015; 10: 849-855
  • 3 Kisoli A, Gray WK, Dotchin CL. et al. Levels of functional disability in elderly people in Tanzania with dementia, stroke and Parkinson’s disease. Acta Neuropsychiatrica 2015; 27: 206-212
  • 4 Flansbjer UB, Downham D, Lexell J. Knee muscle strength, gait performance, and perceived participation after stroke. Archives of Physical Medicine and Rehabilitation 2006; 87: 974-980
  • 5 Kluding P, Gajewski B. Lower-extremity strength differences predict activity limitations in people with chronic stroke. Physical Therapy 2009; 89: 73-81
  • 6 Saunders DH, Greig CA, Mead GE. Physical activity and exercise after stroke: Review of multiple meaningful benefits. Stroke 2014; 45: 3742-3747
  • 7 Moriello C, Finch L, Mayo NE. Relationship between muscle strength and functional walking capacity among people with stroke. Journal of Rehabilitation Research and Development 2011; 48: 267-275
  • 8 Sharififar S, Shuster JJ, Bishop MD. Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine 2018; 61: 339-344
  • 9 Branco JP, Oliveira S, Sargento-Freitas J et al. Assessing functional recovery in the first 6 months after acute ischaemic stroke: A prospective, observational study. European Journal of Physical and Rehabilitation Medicine 2018
  • 10 Wong AWK, Lau SCL, Fong MWM. et al. Conceptual Underpinnings of the Quality of Life in Neurological Disorders (Neuro-QoL): Comparisons of core sets for stroke, multiple sclerosis, spinal cord injury, and traumatic brain injury. Archives of Physical Medicine and Rehabilitation 2018; 99: 1763-1775
  • 11 Liao LR, Ng GY, Jones AY. et al. Whole-Body Vibration intensities in chronic stroke: A randomized controlled trial. Medicine and Science in Sports and Exercise 2016; 48: 1227-1238
  • 12 Lee SW, Cho KH, Lee WH. Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: A randomized controlled trial. Clinical Rehabilitation. 2013; 27: 921-931
  • 13 Chan KS, Liu CW, Chen TW. et al. Effects of a single session of whole body vibration on ankle plantarflexion spasticity and gait performance in patients with chronic stroke: A randomized controlled trial. Clinical Rehabilitation. 2012; 26: 1087-1095
  • 14 Brogardh C, Flansbjer UB, Lexell J. No specific effect of whole-body vibration training in chronic stroke: A double-blind randomized controlled study. Archives of Physical Medicine and Rehabilitation 2012; 93: 253-258
  • 15 Merkert J, Butz S, Nieczaj R. et al. Combined whole body vibration and balance training using Vibrosphere(R): Improvement of trunk stability, muscle tone, and postural control in stroke patients during early geriatric rehabilitation. Zeitschrift fur Gerontologie und Geriatrie 2011; 44: 256-261
  • 16 Pang MY, Lau RW, Yip SP. The effects of whole-body vibration therapy on bone turnover, muscle strength, motor function, and spasticity in chronic stroke: A randomized controlled trial. European Journal of Physical and Rehabilitation Medicine 2013; 49: 439-450
  • 17 Lee G. Does whole-body vibration training in the horizontal direction have effects on motor function and balance of chronic stroke survivors? A preliminary study. Journal of Physical Therapy Science 2015; 27: 1133-1136
  • 18 Guo C, Mi X, Liu S. et al. Whole body vibration training improves walking performance of stroke patients with knee hyperextension: A randomized controlled pilot study. CNS & Neurological Disorders Drug targets 2015; 14: 1110-1115
  • 19 Moher D, Liberati A, Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology 2009; 62: 1006-1012
  • 20 JPT H, S. G Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; West Sussex UK: 2008
  • 21 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002; 21: 1539-1558
  • 22 Lau RW, Yip SP, Pang MY. Whole-body vibration has no effect on neuromotor function and falls in chronic stroke. Medicine and Science in Sports and Exercise 2012; 44: 1409-1418
  • 23 Chisholm AE, Perry SD, McIlroy WE. Correlations between ankle-foot impairments and dropped foot gait deviations among stroke survivors. Clinical Biomechanics 2013; 28: 1049-1054
  • 24 Lang CE, Bland MD, Bailey RR. et al. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. Journal of hand therapy: Official Journal of the American Society of Hand Therapists 2013; 26: 104-114 quiz 15
  • 25 Knarr BA, Reisman DS, Binder-Macleod SA. et al. Understanding compensatory strategies for muscle weakness during gait by simulating activation deficits seen post-stroke. Gait & Posture 2013; 38: 270-275
  • 26 Suzuki M, Fujisawa H, Machida Y. et al. Relationship between the Berg balance scale and static balance test in hemiplegic patients with stroke. Journal of Physical Therapy Science 2013; 25: 1043-1049
  • 27 Ruck J, Chabot G, Rauch F. Vibration treatment in cerebral palsy: A randomized controlled pilot study. Journal of Musculoskeletal & Neuronal Interactions 2010; 10: 77-83
  • 28 El-Shamy SM. Effect of whole-body vibration on muscle strength and balance in diplegic cerebral palsy: A randomized controlled trial. American Journal of Physical Medicine & Rehabilitation 2014; 93: 114-121
  • 29 Hilgers C, Mundermann A, Riehle H. et al. Effects of whole-body vibration training on physical function in patients with multiple sclerosis. Neuro Rehabilitation. 2013; 32: 655-663
  • 30 Miyara K, Matsumoto S, Uema T. et al. Feasibility of using whole body vibration as a means for controlling spasticity in post-stroke patients: A pilot study. Complementary Therapies in Clinical Practice 2014; 20: 70-73
  • 31 van Nes IJ, Geurts AC, Hendricks HT. et al. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence. American Journal of Physical Medicine & Rehabilitation 2004; 83: 867-873
  • 32 van Nes IJ, Latour H, Schils F. et al. Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: A randomized, controlled trial. Stroke 2006; 37: 2331-2335
  • 33 Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Medicine and Science in Sports and Exercise 2003; 35: 1033-1041
  • 34 Abercromby AF, Amonette WE, Layne CS. et al. Vibration exposure and biodynamic responses during whole-body vibration training. Medicine and Science in Sports and Exercise 2007; 39: 1794-1800
  • 35 Bautmans I, Van Hees E, Lemper JC. et al. The feasibility of whole body vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: A randomised controlled trial [ISRCTN62535013]. BMC geriatrics 2005; 5: 17
  • 36 Bruyere O, Wuidart MA, Di Palma E. et al. Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Archives of physical medicine and rehabilitation 2005; 86: 303-307