Klin Padiatr 2019; 231(06): 297-303
DOI: 10.1055/a-1009-6671
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Prediction of ECMO and Mortality in Neonates with Congenital Diaphragmatic Hernia Using the SNAP-II Score

Prädiktion von ECMO-Therapie und Mortalität bei Neugeborenen mit kongenitaler Zwerchfellhernie mittels SNAP-II Score
Florian Kipfmueller
1   Department of Neonatology and Pediatric Critical Care Medicine, University Children’s Hospital, Bonn, Germany
,
Lukas Schroeder
1   Department of Neonatology and Pediatric Critical Care Medicine, University Children’s Hospital, Bonn, Germany
,
Tamene Melaku
1   Department of Neonatology and Pediatric Critical Care Medicine, University Children’s Hospital, Bonn, Germany
,
Annegret Geipel
2   Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Germany
,
Christoph Berg
2   Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Germany
,
Ulrich Gembruch
2   Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Germany
,
Andreas Heydweiller
3   Department of Pediatric Surgery, University Hospital Bonn, Germany
,
Charlotte Bendixen
3   Department of Pediatric Surgery, University Hospital Bonn, Germany
,
Heiko Reutter
1   Department of Neonatology and Pediatric Critical Care Medicine, University Children’s Hospital, Bonn, Germany
,
Andreas Müller
1   Department of Neonatology and Pediatric Critical Care Medicine, University Children’s Hospital, Bonn, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
30 September 2019 (online)

Abstract

Background The mortality of neonates with congenital diaphragmatic hernia (CDH) ranges between 20 and 40% even in specialized high-volume centers. The Score for Neonatal Acute Physiology-II (SNAP-II Score) could facilitate the decision about supportive therapies in CDH newborns.

Methods The SNAP-II score consists of the variables arterial blood pressure, pH, PaO2:FiO2, body temperature, diuresis, and seizure activity and was calculated at an age of 12 h.

Results 101 CDH newborns treated in our institution between 2009 and 2017 were included in the study. A SNAP-II score ≥ 28 was calculated as cutoff for predicting mortality (AUC 0.876; 95% CI: 0.795–0.957). The mortality rate was 52.9% with a SNAP-II score ≥ 28, and 5.9% with a SNAP-II score<28. Sensitivity and specificity for predicting mortality was 81.8 and 79.7%, the negative predicting value (NPV) was 94.0%, the positive predicting value (PPV) 52.9%. The optimal cutoff for predicting ECMO was ≥ 22 (AUC 0.895; 95% CI: 0.836–0.954). Sensitivity and specificity for predicting ECMO therapy was 90.7, and 63.8%, the NPV was 90.2%, and the PPV was 65% respectively. The SNAP-II score was independently associated with mortality [OR 1.126 (95% CI: 1.050–1.207)] and the need for ECMO therapy [OR 1.243 (95% CI: 1.106–1.397)].

Conclusion The SNAP-II score is strongly associated with mortality and the need for ECMO therapy in CDH newborns and should be implemented in the risk stratification of these infants.

Zusammenfassung

Hintergrund Die angeborene Zwerchfellhernie (CDH) gehört mit einer Mortalität von 20–35% zu den schwerwiegendsten Fehlbildungen bei Neugeborenen. Der „Score for Neonatal Acute Physiology-II (SNAP-II Score)“ könnte bei Neonaten mit CDH helfen eine Entscheidung über weiterführende Therapien zu treffen.

Methode Der SNAP-II Score umfasst die Variablen Blutdruck, Temperatur, PaO2:FiO2, pH, Diurese und Vorhandensein zerebraler Anfallsaktivität. Der SNAP-II Score wurde im Alter von 12 Std. berechnet.

Ergebnisse Eingeschlossen wurden 101 Neonaten mit CDH, die zwischen 2009 und 2017 in unserer Klinik behandelt wurden. Die Mortalität betrug 21,8, 39,6% erhielten eine ECMO-Therapie. Bzgl. Der Prädiktion Mortalität wurde ein Grenzwert von 28 berechnet (AUC 0,876; 95% CI: 0,795–0,957). Die Mortalität lag bei einem SNAP-II score ≥ 28 bei 52,9% und bei einem Score<28 bei 5,9%. Sensitivität und Spezifität betrugen 94,4 bzw. 83,6%, der positive prädiktive Wert (PPV) 63% und der negative prädiktive Wert (NPV) 98,1%. Der Grenzwert zur Prädiktion einer ECMO-Therapie war 22 (AUC 0,895; 95% CI: 0,836–0,954). Die ECMO-Rate für einen SNAP-II score ≥ 22 war 65 bzw. 9,8% bei<22. Sensitivität und Spezifität 82,1 bzw. 68,6%, PPV 59%, NPV 87,5%. Der SNAP-II score war unabhängig mit dem Versterben [OR 1,126 (95% CI: 1,050–1,207)] und der Notwendigkeit einer ECMO-Therapie [OR 1,243 (95% CI: 1,106–1,397)] assoziiert.

Schlussfolgerung Mittels SNAP-II Score im Alter von 12 Stunden lässt sich eine suffiziente prognostische Einschätzung bei CDH-Neugeborenen durchführen.

 
  • References

  • 1 Aggarwal S, Stockmann P, Klein MD. et al. Echocardiographic measures of ventricular function and pulmonary artery size: Prognostic markers of congenital diaphragmatic hernia?. J Perinatol 2011; 31: 561-566
  • 2 Brindle ME, Cook EF, Tibboel D. et al. A clinical prediction rule for the severity of congenital diaphragmatic hernias in newborns. Pediatrics 2014; 134: e413-e419
  • 3 Coleman AJ, Brozanski B, Mahmood B. et al. First 24-h SNAP-II score and highest PaCO2 predict the need for ECMO in congenital diaphragmatic hernia. J Pediatr Surg 2013; 48: 2214-2218
  • 4 Dekoninck P, Gratacos E, Van Mieghem T. et al. Results of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia and the set up of the randomized controlled TOTAL trial. Early Hum Dev 2011; 87: 619-624
  • 5 Harting MT. Congenital diaphragmatic hernia-associated pulmonary hypertension. Semin Pediatr Surg 2017; 26: 147-153
  • 6 Hoffman SB, Massaro AN, Gingalewski C. et al. Survival in congenital diaphragmatic hernia: Use of predictive equations in the ECMO population. Neonatology 2011; 99: 258-265
  • 7 Jani J, Keller RL, Benachi A. et al. Prenatal prediction of survival in isolated left-sided diaphragmatic hernia. Ultrasound Obstet Gynecol 2006; 27: 18-22
  • 8 Jani J, Peralta CF, Van Schoubroeck D. et al. Relationship between lung-to-head ratio and lung volume in normal fetuses and fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 2006; 27: 545-550
  • 9 Jani JC, Benachi A, Nicolaides KH. et al. Prenatal prediction of neonatal morbidity in survivors with congenital diaphragmatic hernia: A multicenter study. Ultrasound Obstet Gynecol 2009; 33: 64-69
  • 10 Kipfmueller F, Heindel K, Schroeder L. et al. Early postnatal echocardiographic assessment of pulmonary blood flow in newborns with congenital diaphragmatic hernia. J Perinat Med 2018; 53: 452-460
  • 11 Kotecha S, Barbato A, Bush A. et al. Congenital diaphragmatic hernia. Eur Respir J 2012; 39: 820-829
  • 12 Lusk LA, Wai KC, Moon-Grady AJ. et al. Persistence of pulmonary hypertension by echocardiography predicts short-term outcomes in congenital diaphragmatic hernia. J Pediatr 2015; 166: 251-256.e251
  • 13 McGivern MR, Best KE, Rankin J. et al. Epidemiology of congenital diaphragmatic hernia in Europe: A register-based study. Arch Dis Child Fetal Neonatal Ed 2015; 100: F137-F144
  • 14 Moenkemeyer F, Patel N. Right ventricular diastolic function measured by tissue Doppler imaging predicts early outcome in congenital diaphragmatic hernia. Pediatr Crit Care Med 2014; 15: 49-55
  • 15 Patel N, Moenkemeyer F, Germano S. et al. Plasma vascular endothelial growth factor A and placental growth factor: Novel biomarkers of pulmonary hypertension in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2015; 308: L378-L383
  • 16 Schaible T, Hermle D, Loersch F. et al. A 20-year experience on neonatal extracorporeal membrane oxygenation in a referral center. Intensive Care Med 2010; 36: 1229-1234
  • 17 Schaible T, Veit M, Tautz J. et al. Serum cytokine levels in neonates with congenital diaphragmatic hernia. Klin Padiatr 2011; 223: 414-418
  • 18 Schultz CM, DiGeronimo RJ, Yoder BA. et al. Congenital diaphragmatic hernia: A simplified postnatal predictor of outcome. J Pediatr Surg 2007; 42: 510-516
  • 19 Skarsgard ED, MacNab YC, Qiu Z. et al. SNAP-II predicts mortality among infants with congenital diaphragmatic hernia. J Perinatol 2005; 25: 315-319
  • 20 Snoek KG, Capolupo I, Morini F. et al. Score for neonatal acute physiology-II predicts outcome in congenital diaphragmatic hernia patients. Pediatr Crit Care Med 2016; 17: 540-546
  • 21 Snoek KG, Capolupo I, van Rosmalen J. et al. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: A randomized clinical trial (The VICI-trial). Ann Surg 2016; 263: 867-874
  • 22 Snoek KG, Greenough A, van Rosmalen J. et al. Congenital diaphragmatic hernia: 10-Year evaluation of survival, extracorporeal membrane oxygenation, and foetoscopic endotracheal occlusion in four high-volume centres. Neonatology 2018; 113: 63-68
  • 23 Snoek KG, Kraemer US, Ten Kate CA. et al. High-sensitivity troponin t and n-terminal pro-brain natriuretic peptide in prediction of outcome in congenital diaphragmatic hernia: Results from a multicenter, randomized controlled trial. J Pediatr 2016; 173: 245-249.e244
  • 24 Snoek KG, Reiss IK, Greenough A. et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO Consortium Consensus - 2015 update. Neonatology 2016; 110: 66-74
  • 25 Steinhorn RH, Kinsella JP, Pierce C. et al. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr 2009; 155: 841-847 e841
  • 26 Winkler MM, Weis M, Henzler C. et al. MRI-based ratio of fetal lung to body volume as new prognostic marker for chronic lung disease in patients with congenital diaphragmatic hernia. Klin Padiatr 2017; 229: 67-75