Klinische Neurophysiologie 2019; 50(04): 220-226
DOI: 10.1055/a-1009-5386
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Kontinuierliches subkortikales Mapping zur Überwachung der Pyramidenbahn bei der Entfernung von motorisch eloquent gelegenen Hirntumoren

Continuous Dynamic Mapping to Preserve the Corticospinal Tract During Surgery of Motor Eloquent Brain Tumors
Kathleen Seidel
1   Inselspital, Department of Neurosurgery, Bern University Hospital, Bern, Switzerland
,
Philippe Schucht
1   Inselspital, Department of Neurosurgery, Bern University Hospital, Bern, Switzerland
,
Jürgen Beck
2   Department of Neurosurgery, University of Freiburg, Freiburg
,
Andreas Raabe
1   Inselspital, Department of Neurosurgery, Bern University Hospital, Bern, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
07 November 2019 (online)

Zusammenfassung

Die moderne neurochirurgische Onkologie verfolgt das Konzept der maximalen Tumorentfernung mit gleichzeitiger Funktionserhaltung. Dies ist bei Gliomen eine Herausforderung, da Tumorgrenzen nicht immer sichtbar sind und anatomische Landmarken verschoben sein können. Im folgenden Artikel werden intraoperative neurophysiologische Methoden zur Lokalisation und Überwachung des Primär Motorischen Kortex und der Pyramidenbahn in der supratentoriellen Tumorchirurgie diskutiert.

Abstract

In modern neuro-oncological surgery, the key concept is maximal but safe tumor resection. However, this is a surgical challenge as tumor borders may be invisible, and anatomical landmarks might be distorted. In this review, we discuss intraoperative neurophysiological monitoring and mapping methods to identify the primary motor cortex and corticospinal tract in supratentorial tumor surgery.

 
  • Literatur

  • 1 Chang EF, Clark A, Smith JS. et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article. Journal of neurosurgery 2011; 114: 566-573
  • 2 De Witt Hamer PC, Robles SG, Zwinderman AH. et al. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2012; 30: 2559-2565
  • 3 Raabe A, Beck J, Schucht P. et al. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. Journal of neurosurgery 2014; 120: 1015-1024
  • 4 Bello L, Riva M, Fava E. et al. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro-oncology 2014; 16: 1110-1128
  • 5 Sala F, Lanteri P. Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. Journal of neurosurgical sciences 2003; 47: 79-88
  • 6 Seidel K, Beck J, Stieglitz L. et al. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. Journal of neurosurgery 2013; 118: 287-296
  • 7 McGirt MJ, Chaichana KL, Gathinji M. et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. Journal of neurosurgery 2009; 110: 156-162
  • 8 McGirt MJ, Chaichana KL, Attenello FJ. et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 2008; 63: 700-707 author reply 707-708
  • 9 Lacroix M, Abi-Said D, Fourney DR. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. Journal of neurosurgery 2001; 95: 190-198
  • 10 Stummer W, Pichlmeier U, Meinel T. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. The lancet oncology 2006; 7: 392-401
  • 11 Jakola AS, Myrmel KS, Kloster R. et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA : the journal of the American Medical Association 2012; 308: 1881-1888
  • 12 Sanai N, Polley MY, McDermott MW. et al. An extent of resection threshold for newly diagnosed glioblastomas. Journal of neurosurgery 2011; 115: 3-8
  • 13 Schucht P, Knittel S, Slotboom J. et al. 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta neurochirurgica 2014; 156: 305-312 discussion 312
  • 14 Schucht P, Seidel K, Beck J. et al. Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome. Neurosurgical focus 2014; 37: E16
  • 15 Penfield W. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain: a journal of neurology 1937; 60: 389-443
  • 16 Duffau H, Lopes M, Arthuis F. et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. Journal of neurology, neurosurgery, and psychiatry 2005; 76: 845-851
  • 17 Berger MS, Kincaid J, Ojemann GA. et al. Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery 1989; 25: 786-792
  • 18 Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980; 285: 227
  • 19 Szelenyi A, Senft C, Jardan M. et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2011; 122: 1470-1475
  • 20 Duffau H, Capelle L, Denvil D. et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. Journal of neurosurgery 2003; 98: 764-778
  • 21 Duffau H. The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex; a journal devoted to the study of the nervous system and behavior 2014; 58: 325-337
  • 22 Kombos T, Suss O, Vajkoczy P. Subcortical mapping and monitoring during insular tumor surgery. Neurosurgical focus 2009; 27: E5
  • 23 Deletis V, Camargo AB. Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery 2001; 49: 1488-1489
  • 24 Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2001; 112: 445-452
  • 25 Neuloh G, Pechstein U, Schramm J. Motor tract monitoring during insular glioma surgery. Journal of neurosurgery 2007; 106: 582-592
  • 26 Szelenyi A, Hattingen E, Weidauer S. et al. Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery 2010; 67: 302-313
  • 27 Krammer MJ, Wolf S, Schul DB. et al. Significance of intraoperative motor function monitoring using transcranial electrical motor evoked potentials (MEP) in patients with spinal and cranial lesions near the motor pathways. British journal of neurosurgery 2009; 23: 48-55
  • 28 Neuloh G, Pechstein U, Cedzich C. et al. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 2007; 61: 337-346 discussion 346-338
  • 29 Szelenyi A, Bello L, Duffau H. et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurgical focus 2010; 28: E7
  • 30 Berger MS, Hadjipanayis CG. Surgery of intrinsic cerebral tumors. Neurosurgery 2007; 61: 279-304 discussion 304-275
  • 31 Plans G, Fernandez-Conejero I, Rifa-Ros X. et al. Evaluation of the High-Frequency Monopolar Stimulation Technique for Mapping and Monitoring the Corticospinal Tract in Patients With Supratentorial Gliomas. A Proposal for Intraoperative Management Based on Neurophysiological Data Analysis in a Series of 92 Patients. Neurosurgery 2017; 81: 585-594
  • 32 Seidel K, Beck J, Stieglitz L. et al. Low-threshold monopolar motor mapping for resection of primary motor cortex tumors. Neurosurgery 2012; 71: 104-114 discussion 114-105
  • 33 Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 1993; 32: 219-226
  • 34 Hern JE, Landgren S, Phillips CG. et al. Selective excitation of corticofugal neurones by surface-anodal stimulation of the baboon's motor cortex. The Journal of physiology 1962; 161: 73-90
  • 35 Kombos T, Suess O, Kern BC. et al. Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta neurochirurgica 1999; 141: 1295-1301
  • 36 Yingling CD, Ojemann S, Dodson B. et al. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. Journal of neurosurgery 1999; 91: 922-927
  • 37 Macdonald DB, Skinner S, Shils J. et al. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2013; 124: 2291-2316
  • 38 Szelenyi A, Joksimovic B, Seifert V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society 2007; 24: 39-43
  • 39 Ulkatan S, Jaramillo AM, Tellez MJ. et al. Incidence of intraoperative seizures during motor evoked potential monitoring in a large cohort of patients undergoing different surgical procedures. Journal of neurosurgery 2017; 126: 1296-1302
  • 40 Suess O, Kombos T, Hoell T. et al. A new cortical electrode for neuronavigation-guided intraoperative neurophysiological monitoring: technical note. Acta neurochirurgica 2000; 142: 329-332
  • 41 Landazuri P, Eccher M. Simultaneous Direct Cortical Motor Evoked Potential Monitoring and Subcortical Mapping for Motor Pathway Preservation During Brain Tumor Surgery: Is it Useful?. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society 2013; 30: 623-625
  • 42 Kamada K, Todo T, Ota T. et al. The motor-evoked potential threshold evaluated by tractography and electrical stimulation. Journal of neurosurgery 2009; DOI: 10.3171/2008.9.JNS0841410.3171/2008.9.JNS08414. [pii]
  • 43 Nossek E, Korn A, Shahar T. et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. Journal of neurosurgery 2011; 114: 738-746
  • 44 Prabhu SS, Gasco J, Tummala S. et al. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. Journal of neurosurgery 2011; 114: 719-726
  • 45 Ohue S, Kohno S, Inoue A. et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 2012; 70: 283-293 discussion 294
  • 46 Shiban E, Krieg SM, Haller B. et al. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract?. Journal of neurosurgery 2015; 123: 711-720
  • 47 Shiban E, Krieg SM, Obermueller T. et al. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. Journal of neurosurgery 2015; 123: 301-306
  • 48 Roth J, Korn A, Bitan-Talmor Y. et al. Subcortical Mapping Using an Electrified Cavitron UltraSonic Aspirator in Pediatric Supratentorial Surgery. World neurosurgery 2017; 101: 357-364
  • 49 Carrabba G, Mandonnet E, Fava E. et al. Transient inhibition of motor function induced by the Cavitron ultrasonic surgical aspirator during brain mapping. Neurosurgery 2008; 63: E178-E179 discussion E179