Klinische Neurophysiologie 2019; 50(04): 213-219
DOI: 10.1055/a-1009-4083
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Neurophysiologisches Monitoring des Nervus facialis bei Operationen an Vestibularisschwannomen: Der aktuelle Stand

Neurophysiologic Monitoring of the Facial Nerve in Vestibular Schwannoma Surgery: The State of the Art
Julian Prell
1   Neurochirurgische Klinik, Universitätsklinikum Halle (Saale)
,
Christian Strauss
1   Neurochirurgische Klinik, Universitätsklinikum Halle (Saale)
,
Stefan Rampp
1   Neurochirurgische Klinik, Universitätsklinikum Halle (Saale)
,
Andrea Szelenyi
2   Neurochirurgische Klinik, Klinikum der Universität München, Standort Großhadern
› Author Affiliations
Further Information

Publication History

Publication Date:
07 October 2019 (online)

Zusammenfassung

Hintergrund Nach Operationen an Vestibularisschwannomen gehören funktionelle Defizite des Nervus facialis zu den bedeutendsten Komplikationen. Mit Hilfe des intraoperativen neurophysiologischen Monitorings (IONM) sollen diese möglichst verhindert werden.

Fragestellung Welche Methoden zur Intraoperativen Funktionsüberwachung sind aktuell in Gebrauch, welche Ziele können damit sinnvoll verfolgt werden und welche Schwachpunkte bedürfen einer weiteren wissenschaftlichen Aufarbeitung?

Material und Methoden Auswertung und Zusammenfassung der Literatur, Diskussion der vorhandenen Methoden und ihrer Fähigkeiten, die gesteckten Ziele zu erreichen.

Ergebnisse Aus dem IONM abgeleitete Methoden des sogenannten „Mappings“ sollen den Nervus Facialis intraoperativ sicher identifizieren. IONM soll potenziell schädigende Ereignisse anzeigen und eine Einschätzung über den zu erwartenden postoperativen Funktionszustand des Nervs erlauben. Derzeit verwendet werden die elektrische Direktstimulation, das freilaufende EMG, Evozierte Potenziale des Nervus Facialis (MEP) und das prozessierte EMG. Vor allem in der Ergebnisprognostik haben alle vorhandenen Methoden deutliche Schwächen.

Schlussfolgerungen Das „Mapping“ der Nerven im OP-Situs kann mittels der elektrischen Direktstimulation gut realisiert werden. Nervenschädigungen während der Präparation können mit den anderen Methoden des IONM entweder in Echtzeit (freilaufendes EMG; prozessiertes EMG) oder nahezu in Echtzeit (MEP) angezeigt werden. Die Vorhersage des postoperativen, funktionellen Ergebnisses wird derzeit bei allen verfügbaren Methoden durch falsch positive Untersuchungsergebnisse mit konsekutiv niedrigem positiv prädiktivem Wert belastet.

Abstract

Background Functional deficit of the facial nerve is an important complication after vestibular schwannoma surgery and supposed to be prevented by IONM.

Problem Which IONM methods are in use, what are their strengths and their weak points?

Material and methods Review and summary of the literature.

Results Mapping is derived from IONM techniques and is used to identify the facial nerve during surgery. IONM itself aims at detection of dangerous events in relation to facial nerve function, on the one hand, and prognostic estimation of damage done, on the other. Currently used techniques are direct electrical stimulation, free-running EMG, motor evoked potentials of the facial nerve (MEP) and processed EMG.

Conclusions Mapping of the facial nerve is feasible and reliable. Damage to the nerve may be detected by IONM either in real-time (free-running EMG; processed EMG) or nearly in real-time (MEP). The prognostic value of all methods is limited by false positive monitoring results.

 
  • Literatur

  • 1 Samii M, Gerganov VM, Samii A. Functional outcome after complete surgical removal of giant vestibular schwannomas. Journal of neurosurgery 2010; 112: 860-867
  • 2 House JW, Brackmann DE. Facial nerve grading system. Otolaryngol Head Neck Surg 1985; 93: 146-147
  • 3 Rahman I, Sadiq SA. Ophthalmic management of facial nerve palsy: a review. Surv Ophthalmol 2007; 52: 121-144
  • 4 Delgado TE, Bucheit WA, Rosenholtz HR. et al. Intraoperative monitoring of facila muscle evoked responses obtained by intracranial stimulation of the facila nerve: a more accurate technique for facila nerve dissection. Neurosurgery 1979; 4: 418-421
  • 5 Moller AR, Jannetta PJ. Preservation of facial function during removal of acoustic neuromas. Use of monopolar constant-voltage stimulation and EMG. Journal of neurosurgery 1984; 61: 757-760
  • 6 Moller AR, Jannetta PJ. Monitoring of facial nerve function during removal of acoustic tumor. Am J Otol 1985; Suppl: 27-29
  • 7 Kartush JM, Niparko JK, Bledsoe SC. et al. Intraoperative facial nerve monitoring: a comparison of stimulating electrodes. Laryngoscope 1985; 95: 1536-1540
  • 8 Kartush JM. Neurography for intraoperative monitoring of facial nerve function. Neurosurgery 1989; 24: 300-301
  • 9 Prass RL, Kinney SE, Hardy Jr. RW. et al. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection. Otolaryngol Head Neck Surg 1987; 97: 541-551
  • 10 Prass RL, Luders H. Acoustic (loudspeaker) facial electromyographic monitoring: Part 1. Evoked electromyographic activity during acoustic neuroma resection. Neurosurgery 1986; 19: 392-400
  • 11 Romstock J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. Journal of neurosurgery 2000; 93: 586-593
  • 12 Schmitt WR, Daube JR, Carlson ML. et al. Use of supramaximal stimulation to predict facial nerve outcomes following vestibular schwannoma microsurgery: results from a decade of experience. Journal of neurosurgery 2013; 118: 206-212
  • 13 Prell J, Rachinger J, Scheller C. et al. A real-time monitoring system for the facial nerve. Neurosurgery 2010; 66: 1064-1073, discussion 1073
  • 14 Prell J, Rampp S, Romstock J. et al. Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. Journal of neurosurgery 2007; 106: 826-832
  • 15 Prell J, Strauss C, Rachinger J. et al. Facial nerve palsy after vestibular schwannoma surgery: Dynamic risk-stratification based on continuous EMG-monitoring. Clin Neurophysiol 2014; 125: 415-421
  • 16 Rampp S, Prell J, Thielemann H. et al. Baseline correction of intraoperative electromyography using discrete wavelet transform. J Clin Monit Comput 2007; 21: 219-226
  • 17 Rampp S, Rachinger J, Scheller C. et al. How many electromyography channels do we need for facial nerve monitoring?. J Clin Neurophysiol 2012; 29: 226-229
  • 18 Dong CC, Macdonald DB, Akagami R. et al. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 2005; 116: 588-596
  • 19 Fukuda M, Oishi M, Takao T. et al. Facial nerve motor-evoked potential monitoring during skull base surgery predicts facial nerve outcome. J Neurol Neurosurg Psychiatry 2008; 79: 1066-1070
  • 20 Acioly MA, Liebsch M, Carvalho CH. et al. Transcranial electrocortical stimulation to monitor the facial nerve motor function during cerebellopontine angle surgery. Neurosurgery 2010; 66: 354-361 discussion 362
  • 21 Matthies C, Raslan F, Schweitzer T. et al. Facial motor evoked potentials in cerebellopontine angle surgery: technique, pitfalls and predictive value. Clin Neurol Neurosurg 2011; 113: 872-879
  • 22 Szelenyi A, Kothbauer KF, Deletis V. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: Stimulation parameters and electrode montages. Clin Neurophysiol 2007; 118: 1586-1595
  • 23 Pechstein U, Cedzich C, Nadstawek J. et al. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 1996; 39: 335-343 discussion 343-334
  • 24 Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 1993; 32: 219-226
  • 25 Zentner J. Influence of anesthetics on the electromyographic response evoked by transcranial electrical cortex stimulation. Funct Neurol 1989; 4: 299-300
  • 26 Szelenyi A, Deletis V. Motor evoked potentials. Journal of neurosurgery 2004; 101: 563-564 author reply 564
  • 27 Deletis V. What does intraoperative monitoring of motor evoked potentials bring to the neurosurgeon?. Acta Neurochir (Wien) 2005; 147: 1015-1017
  • 28 Morota N, Deletis V, Constantini S. et al. The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 1997; 41: 1327-1336
  • 29 Sala F, Manganotti P, Tramontano V. et al. Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss?. Neurophysiol Clin 2007; 37: 399-406
  • 30 Kombos T, Suess O, Pietila T. et al. Subdural air limits the elicitation of compound muscle action potentials by high-frequency transcranial electrical stimulation. Br J Neurosurg 2000; 14: 240-243
  • 31 Rampp S, Prell J, Rachinger JC. et al. Does electrode placement influence quality of intraoperative monitoring in vestibular schwannoma surgery?. Cen Eur Neurosurg 2011; 72: 22-27
  • 32 Eisner W, Schmid UD, Reulen HJ. et al. The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery 1995; 37: 255-265
  • 33 Harner SG, Daube JR, Ebersold MJ. et al. Improved preservation of facial nerve function with use of electrical monitoring during removal of acoustic neuromas. Mayo Clin Proc 1987; 62: 92-102
  • 34 Harper CM, Daube JR. Facial nerve electromyography and other cranial nerve monitoring. J Clin Neurophysiol 1998; 15: 206-216
  • 35 Prell J, Rampp S, Ache J. et al. The potential of quantified lower cranial nerve EMG for monitoring of anesthetic depth. J Neurosurg Anesthesiol 2012; 24: 139-145
  • 36 Nakao Y, Piccirillo E, Falcioni M. et al. Electromyographic evaluation of facial nerve damage in acoustic neuroma surgery. Otol Neurotol 2001; 22: 554-557
  • 37 Rampp S, Strauss C, Scheller C. et al. A-trains for intraoperative monitoring in patients with recurrent vestibular schwannoma. Acta Neurochir (Wien) 2013; 155: 2273-2279 discussion 2279
  • 38 Harner R. Automatic EEG spike detection. Clin EEG Neurosci 2009; 40: 262-270
  • 39 Strauss C, Prell J, Rampp S. et al. Split facial nerve course in vestibular schwannomas. Journal of neurosurgery 2006; 105: 698-705
  • 40 Prell J, Strauss C, Rachinger J. et al. The intermedius nerve as a confounding variable for monitoring of the free-running electromyogram. Clin Neurophysiol 2015; 126: 1833-1839
  • 41 Alfieri A, Rampp S, Strauss C. et al. The relationship between nervus intermedius anatomy, ultrastructure, electrophysiology, and clinical function. Usefulness in cerebellopontine microsurgery. Acta Neurochir (Wien) 2014; 156: 403-408
  • 42 Sala F, Palandri G, Basso E. et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 2006; 58: 1129-1143, discussion 1129-1143
  • 43 Hou B. The medium and long-term effect of electrophysiologic monitoring on the facial nerve function in minimally invasive surgery treating acoustic neuroma. Exp Ther Med 2018; 15: 2347-2350
  • 44 Sanna M, Taibah A, Russo A. et al. Perioperative complications in acoustic neuroma (vestibular schwannoma) surgery. Otol Neurotol 2004; 25: 379-386
  • 45 Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas): the facial nerve–preservation and restitution of function. Neurosurgery 1997; 40: 684-694, discussion 694-685
  • 46 Comey CH, Jannetta PJ, Sheptak PE. et al. Staged removal of acoustic tumors: techniques and lessons learned from a series of 83 patients. Neurosurgery 1995; 37: 915-920, discussion 920-911
  • 47 Howick J, Cohen BA, McCulloch P. et al. Foundations for evidence-based intraoperative neurophysiological monitoring. Clin Neurophysiol 2016; 127: 81-90
  • 48 Prell J. How to deal with the “Gordian knot” of evidence base?. Clin Neurophysiol 2016; 127: 2970-2971