TumorDiagnostik & Therapie 2019; 40(09): 609-616
DOI: 10.1055/a-1008-2552
Thieme Onkologie aktuell
© Georg Thieme Verlag KG Stuttgart · New York

Enhanced imaging – Neue diagnostische Methoden beim Urothelkarzinom

Enhanced endoscopic imaging for urothelial cancer
Thomas Knoll
1   Klinikum Sindelfingen-Böblingen
,
Thorsten Bach
2   Klinik für Urologie, Asklepios-Klinikum Harburg, Hamburg
› Author Affiliations
Further Information

Publication History

Publication Date:
30 October 2019 (online)

Zusammenfassung

Die korrekte Detektion von Blasentumoren ist die Voraussetzung zur vollständigen Resektion und damit zur Reduktion von Rezidiven, aber auch zum korrekten Staging von fortgeschrittenen und High-grade-Karzinomen. Die Weißlicht-Zystoskopie stellt den Goldstandard dar und konnte durch die digitale HD-Zystoskopie weiter verbessert werden. Die weiteren Verfahren zur verbesserten Bildgebung etablieren sich schrittweise. Narrow-Band Imaging und S-System könnten v. a. im ambulanten Setting einen Vorteil darstellen, da keine Kontrastmittel notwendig sind. Die fotodynamische Diagnostik hat sich bereits im klinischen Setting bei der TURB, zumindest bei High-grade-Karzinomen, etabliert und einen gesicherten Stellenwert in den Leitlinienempfehlungen. Die Kombination von diesen makroskopischen Verfahren mit mikroskopischer Bildgebung könnte die Diagnostik verbessern. Solche neueren Verfahren wie optische Kohärenztomografie oder konfokale Laser-Endomikroskopie sind derzeit in der klinischen Evaluation. Andere Techniken bis hin zur molekularen Bildgebung stellen spannende Konzepte dar, deren Weg in die Klink aber noch lang zu sein scheint.

Abstract

The precise identification and detection of bladder tumours is a prerequisite for complete transurethral resection and, thus, the reduction of recurrence. White-light cystoscopy remains the gold standard and has been further improved by the introduction of digital HD techniques. New digital techniques such as narrow-band imaging (NBI) or the IMAGE 1 S-System have been introduced to better visualise suspicious areas. They are particularly valuable in the outpatient setting. However, fluorescence or photodynamic diagnostics (PDD) after instillation of hexaminolevulinic acid into the bladder is the only approach supported by good evidence. It is recommended by most guidelines in highgrade tumours or carcinoma in situ, while the value of NBI and the Image 1 S-System is under evaluation. Newer approaches include microscopic techniques such as optical coherence tomography, confocal laser endomicroscopy or molecular imaging. The combination of these methods with macroscopic imaging could be very promising.

 
  • Literatur

  • 1 Antoni S, Ferlay J, Soerjomataram I. et al. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol 2017; 71: 96-108
  • 2 Vrooman OP, Witjes JA. Urinary markers in bladder cancer. Eur Urol 2008; 53: 909-916
  • 3 Carmack AJ, Soloway MS. The diagnosis and staging of bladder cancer: from RBCs to TURs. Urology 2006; 67: 3-8
  • 4 Okhunov Z, Hruby GW, Mirabile G. et al. Prospective comparison of flexible fiberoptic and digital cystoscopes. Urology 2009; 74: 427-430
  • 5 Mowatt G, N’Dow J, Vale L. et al. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis. Int J Technol Assess Health Care 2011; 27: 3-10
  • 6 Kausch I, Sommerauer M, Montorsi F. et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol 2010; 57: 595-606
  • 7 Steiner R, Holten M, Wendt-Nordahl G. et al. Routine fluoresecence cystoscopy leads to significantly increased detection of carcinoma in situ. J Urol 2012; 187: 1
  • 8 Burger M, Grossman HB, Droller M. et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol 2013; 64: 846-854
  • 9 Karaolides T, Skolarikos A, Bourdoumis A. et al. Hexaminolevulinateinduced fluorescence versus white light during transurethral resection of noninvasive bladder tumor: does it reduce recurrences?. Urology 2012; 80: 354-359
  • 10 Grossman HB, Stenzl A, Fradet Y. et al. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol 2012; 188: 58-62
  • 11 Draga RO, Grimbergen MC, Kok ET. et al. Photodynamic diagnosis (5-aminolevulinic acid) of transitional cell carcinoma after bacillus Calmette-Guerin immunotherapy and mitomycin C intravesical therapy. Eur Urol 2010; 57: 655-660
  • 12 Herr HW, Donat SM. A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int 2008; 102: 1111-1114
  • 13 Cauberg EC, Kloen S, Visser M. et al. Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer. Urology 2010; 76: 658-663
  • 14 Zheng C, Lv Y, Zhong Q. et al. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int 2012; 110: E680-E687
  • 15 Herr HW, Donat SM. Reduced bladder tumour recurrence rate associated with narrow-band imaging surveillance cystoscopy. BJU Int 2011; 107: 396-398
  • 16 Naselli A, Introini C, Timossi L. et al. A randomized prospective trial to assess the impact of transurethral resection in narrow band imaging modality on non-muscle-invasive bladder cancer recurrence. Eur Urol 2012; 61: 908-913
  • 17 Gravas S, Stenzl A. The Storz professional image enhancement system (spies) nonmuscle-invasive bladder cancer study: a multicenter international randomized controlled study. J Endourol 2014; 28: 1254-1255
  • 18 Breda A, Territo A, Guttilla A. et al. Correlation Between Confocal Laser Endomicroscopy (Cellvizio®) and Histological Grading of Upper Tract Urothelial Carcinoma: A Step Forward for a Better Selection of Patients Suitable for Conservative Management. Eur Urol Focus 2017; DOI: 10.1016/j.euf.2017.05.008.
  • 19 Sonn GA, Jones SN, Tarin TV. et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J Urol 2009; 182: 1299-1305
  • 20 Chang TC, Liu JJ, Hsiao ST. et al. Interobserver agreement of confocal laser endomicroscopy for bladder cancer. J Endourol 2013; 27: 598-603
  • 21 Bui D, Mach KE, Zlatev DV. et al. A Pilot Study of In Vivo Confocal Laser Endomicroscopy of Upper Tract Urothelial Carcinoma. J Endourol 2015; 29: 1418-1423
  • 22 Villa L, Cloutier J, Cote JF. et al. Confocal Laser Endomicroscopy in the Management of Endoscopically Treated Upper Urinary Tract Transitional Cell Carcinoma: Preliminary Data. J Endourol 2016; 30: 237-242
  • 23 Goh AC, Tresser NJ, Shen SS. et al. Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer. Urology 2008; 72: 133-137
  • 24 Karl A, Stepp H, Willmann E. et al. Optical coherence tomography for bladder cancer – ready as a surrogate for optical biopsy? Results of a prospective mono-centre study. Eur J Med Res 2010; 15: 131-134
  • 25 Hermes B, Spoler F, Naami A. et al. Visualization of the basement membrane zone of the bladder by optical coherence tomography: feasibility of noninvasive evaluation of tumor invasion. Urology 2008; 72: 677-681
  • 26 Schmidbauer J, Remzi M, Klatte T. et al. Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder. Eur Urol 2009; 56: 914-919
  • 27 Draga RO, Grimbergen MC, Vijverberg PL. et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem 2010; 82: 5993-5999
  • 28 Barman I, Dingari NC, Singh GP. et al. Selective sampling using confocal Raman spectroscopy provides enhanced specificity for urinary bladder cancer diagnosis. Anal Bioanal Chem 2012; 404: 3091-3099
  • 29 Soper TD, Porter MP, Seibel EJ. Surface mosaics of the bladder reconstructed from endoscopic video for automated surveillance. IEEE Trans Biomed Eng 2012; 59: 1670-1680
  • 30 Pan Y, Volkmer JP, Mach KE. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci Transl Med 2014; DOI: 10.1126/scitranslmed.3009457.
  • 31 Schubert T, Rausch S, Fahmy O. et al. Optical improvements in the diagnosis of bladder cancer: implications for clinical practice. Ther Adv Urol 2017; 9: 251-260
  • 32 Babjuk M, Soukup V, Petrik R. et al. 5-aminolaevulinic acid-induced fluorescence cystoscopy during transurethral resection reduces the risk of recurrence in stage Ta/T1 bladder cancer. BJU Int 2005; 96: 798-802
  • 33 Burger M, Stief CG, Zaak D. et al. Hexaminolevulinate is equal to 5-aminolevulinic acid concerning residual tumor and recurrence rate following photodynamic diagnostic assisted transurethral resection of bladder tumors. Urology 2009; 74: 1282-1286
  • 34 Denzinger S, Burger M, Walter B. et al. Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study. Urology 2007; 69: 675-679
  • 35 Grossman HB, Gomella L, Fradet Y. et al. A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. J Urol 2007; 178: 62-67
  • 36 Geavlete B, Multescu R, Georgescu D. et al. Treatment changes and long-term recurrence rates after hexaminolevulinate (HAL) fluorescence cystoscopy: does it really make a difference in patients with non-muscle-invasive bladder cancer (NMIBC)?. BJU Int 2012; 109: 549-556
  • 37 Hermann GG, Mogensen K, Carlsson S. et al. Fluorescence-guided transurethral resection of bladder tumours reduces bladder tumour recurrence due to less residual tumour tissue in Ta/T1 patients: a randomized two-centre study. BJU Int 2011; 108: E297-E303
  • 38 Schumacher MC, Holmang S, Davidsson T. et al. Transurethral resection of non-muscle-invasive bladder transitional cell cancers with or without 5-aminolevulinic Acid under visible and fluorescent light: results of a prospective, randomised, multicentre study. Eur Urol 2010; 57: 293-299
  • 39 Stenzl A, Penkoff H, Dajc-Sommerer E. et al. Detection and clinical outcome of urinary bladder cancer with 5-aminolevulinic acid-induced fluorescence cystoscopy: A multicenter randomized, doubleblind, placebo-controlled trial. Cancer 2011; 117: 938-947
  • 40 Stenzl A, Burger M, Fradet Y. et al. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol 2010; 184: 1907-1913
  • 41 Gakis G, Ngamsri T, Rausch S. et al. Fluorescence-guided bladder tumour resection: impact on survival after radical cystectomy. World J Urol 2015; 33: 1429-1437
  • 42 Bryan RT, Shah ZH, Collins SI. et al. Narrow-band imaging flexible cystoscopy: a new user’s experience. J Endourol 2010; 24: 1339-1343
  • 43 Shen YJ, Zhu YP, Ye DW. et al. Narrow-band imaging flexible cystoscopy in the detection of primary non-muscle invasive bladder cancer: a “second look” matters?. Int Urol Nephrol 2012; 44: 451-457
  • 44 Tatsugami K, Kuroiwa K, Kamoto T. et al. Evaluation of narrow-band imaging as a complementary method for the detection of bladder cancer. J Endourol 2010; 24: 1807-1811