Rofo 2020; 192(02): 150-162
DOI: 10.1055/a-0998-4300
Review
© Georg Thieme Verlag KG Stuttgart · New York

Peripheral Vascular Anomalies – Essentials in Periinterventional Imaging

Periphere kongenitale Gefäßanomalien – Grundlagen der periinterventionellen Bildgebung
Maliha Sadick
1   University Medical Center Mannheim, Institute for Clinical Radiology and Nuclear Medicine, Mannheim, Germany
,
Daniel Overhoff
1   University Medical Center Mannheim, Institute for Clinical Radiology and Nuclear Medicine, Mannheim, Germany
,
Bettina Baessler
1   University Medical Center Mannheim, Institute for Clinical Radiology and Nuclear Medicine, Mannheim, Germany
,
Naema von Spangenberg
1   University Medical Center Mannheim, Institute for Clinical Radiology and Nuclear Medicine, Mannheim, Germany
,
Lena Krebs
1   University Medical Center Mannheim, Institute for Clinical Radiology and Nuclear Medicine, Mannheim, Germany
,
Walter A. Wohlgemuth
2   Department for Radiology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
› Author Affiliations
Further Information

Publication History

01 June 2019

04 August 2019

Publication Date:
17 October 2019 (online)

Abstract

Background Peripheral vascular anomalies represent a rare disease with an underlying congenital mesenchymal and angiogenetic disorder. Vascular anomalies are subdivided into vascular tumors and vascular malformations. Both entities include characteristic features and flow dynamics. Symptoms can occur in infancy and adulthood. Vascular anomalies may be accompanied by characteristic clinical findings which facilitate disease classification. The role of periinterventional imaging is to confirm the clinically suspected diagnosis, taking into account the extent and location of the vascular anomaly for the purpose of treatment planning.

Method In accordance with the International Society for the Study of Vascular Anomalies (ISSVA), vascular anomalies are mainly categorized as slow-flow and fast-flow lesions. Based on the diagnosis and flow dynamics of the vascular anomaly, the recommended periinterventional imaging is described, ranging from ultrasonography and plain radiography to dedicated ultrafast CT and MRI protocols, percutaneous phlebography and transcatheter angiography. Each vascular anomaly requires dedicated imaging. Differentiation between slow-flow and fast-flow vascular anomalies facilitates selection of the appropriate imaging modality or a combination of diagnostic tools.

Results Slow-flow congenital vascular anomalies mainly include venous and lymphatic or combined malformations. Ultrasound and MRI and especially MR-venography are essential for periinterventional imaging. Arteriovenous malformations are fast-flow vascular anomalies. They should be imaged with dedicated MR protocols, especially when extensive. CT with 4D perfusion imaging as well as time-resolved 3D MR-A allow multiplanar perfusion-based assessment of the multiple arterial inflow and venous drainage vessels of arterio-venous malformations. These imaging tools should be subject to intervention planning, as they can reduce procedure time significantly. Fast-flow vascular tumors like hemangiomas should be worked up with ultrasound, including color-coded duplex sonography, MRI and transcatheter angiography in case of a therapeutic approach. In combined malformation syndromes, radiological imaging has to be adapted according to the dominant underlying vessels and their flow dynamics.

Conclusion Guide to evaluation of flow dynamics in peripheral vascular anomalies, involving vascular malformations and vascular tumors with the intention to facilitate selection of periinterventional imaging modalities and diagnostic and therapeutic approach to vascular anomalies.

Key Points:

  • Peripheral vascular anomalies include vascular malformations and vascular tumors. Both entities represent a rare disease with an underlying congenital mesenchymal or angiogenetic disorder

  • The role of periinterventional imaging is confirmation of the diagnosis by assessing the flow dynamics of the vascular anomaly

  • Slow-flow congenital vascular anomalies include venous, lymphatic and venolymphatic malformations. Arteriovenous malformations are fast-flow vascular anomalies, whereas hemangiomas are fast-flow vascular tumors that are frequently associated with fast-flow arteriovenous shunts. The periinterventional imaging modalities of choice include dedicated MR protocols and CT with 4D perfusion imaging as well as invasive transcatheter angiography.

Citation Format

  • Sadick M, Overhoff D, Baessler B et al. Peripheral Vascular Anomalies – Essentials in Periinterventional Imaging. Fortschr Röntgenstr 2020; 192: 150 – 162

Zusammenfassung

Hintergrund Periphere Gefäßanomalien sind eine seltene Erkrankung, die auf einer kongenitalen Störung der mesenchymalen und angiogenetischen Entwicklung von Gewebe basiert. Gefäßanomalien werden in Gefäßtumoren und vaskuläre Malformationen unterteilt. Beide Entitäten sind mit charakteristischen Flusseigenschaften vergesellschaftet. Symptome können im Kindes- und Erwachsenenalter manifest werden. Gefäßanomalien gehen mit klinischen Befunden einher, die die Diagnose erleichtern können. Die Rolle der periinterventionellen Bildgebung besteht in der Bestätigung der klinischen Verdachtsdiagnose unter Berücksichtigung von Ausdehnung und Lokalisation der Gefäßanomalie.

Material und Methode In Anlehnung an die International Society for the Study of Vascular Anomalies (ISSVA) werden Gefäßanomalien in Slow-flow- und Fast-flow-Läsionen eingeteilt. Basierend auf Diagnose und Flussdynamik wird für die Gefäßanomalien die am besten geeignete Bildgebung beschrieben. Das gesamte Spektrum der Bildgebung umfasst Ultraschall, konventionelles Röntgen, CT und MRT sowie die perkutane Phlebografie und die Katheterangiografie. Gefäßanomalien bedürfen einer dezidierten Bildgebung. Die Einteilung in Slow-flow- und Fast-flow-Entitäten erleichtert die Auswahl der diagnostischen Modalitäten.

Ergebnisse Slow-flow-Gefäßanomalien beinhalten venöse, lymphatische und kombinierte Gefäßanomalien. Ultraschall und MRT, insbesondere die MR-Venografie, sind essenziell für die Diagnostik von Slow-flow-Gefäßanomalien. Arteriovenöse Malformationen sind Fast-flow-Gefäßanomalien. Diese sollten mit dedizierten MRT-Protokollen untersucht werden, insbesondere dann, wenn es sich um ausgedehnte Gefäßanomalien handelt. Die 4D-CT-Bildgebung und zeitaufgelöste 3D-MRA ermöglichen multiplanare Perfusionsuntersuchungen. Diese Modalitäten sollten der Behandlungsplanung vorbehalten sein, da sie die Interventionszeit beachtlich verkürzen können. Fast-flow-Gefäßtumoren, wie z. B. Hämangiome, sollten mittels Ultraschalls, Duplexsonografie und MRT evaluiert werden. Die Katheterangiografie kommt bei geplanter Embolo-Therapie zum Einsatz. Bei Malformationssyndromen muss die radiologische Bildgebung stets nach der dominierenden vaskulären Komponente der Gefäßanomalie selektioniert werden.

Zusammenfassung Diese Übersichtsarbeit unterteilt periphere Gefäßanomalien, nämlich vaskuläre Malformationen und vaskuläre Tumoren, anhand ihrer Flussdynamik und empfiehlt geeignete periinterventionelle Bildgebungsmethoden zur Optimierung von Diagnostik und Therapie dieser seltenen Erkrankung.

Kernaussagen:

  • Periphere Gefäßanomalien sind eine Seltene Erkrankung, die auf einer kongenitalen Störung der mesenchymalen und angiogenetischen Entwicklung von Gewebe basiert

  • Die Rolle der periinterventionellen Bildgebung liegt in der Diagnosesicherung anhand der Flussdynamik der Gefäßanomalie

  • Slow-flow Gefäßanomalien beinhalten venöse, lymphatische und kombinierte Gefäßanomalien. Arteriovenöse Malformationen sind fast-flow Gefäßanomalien, wohingegen Hämangiome fast-flow Gefäßtumore sind, die oftmals auch mit ausgedehnten arteriovenösen fast-flow shunts einhergehen. Die periinterventionelle Bildgebung umfasst eine Vielzahl von diagnostischen Optionen, darunter dedizierte MRT Protokolle, 4D CT Bildgebung und Katheterangiographie

 
  • Literatur

  • 1 Nassiri N, Cirillo-Penn NC, Thomas J. Evaluation and management of congenital peripheral arteriovenous malformations. J Vasc Surg 2015; 62: 1667-1676
  • 2 Frey S, Haine A, Krammer R. et al. Hemodynamic Characterization of Peripheral Arterio-venous Malformations. Annals of Biomed Eng 2017; 45: 1449-1461
  • 3 Tahir M, Mumtaz MA, Sultan A. et al. Role of Interventional Radiology in the Management of Peripheral Vascular Malformations: A Tertiary Care Center Experience. Cureus 2018; 10: e2325 . doi:10.7759/cureus.2335
  • 4 Mulliken JB, Glowacki J. Hemangiomas and Vascular Malformations in Infants and Children: a classification based on endothelial characteristics. Plast Reconstr Surg 1982; 69: 412-422
  • 5 Wassef M, Blei F, Adams D. et al. Vascular Anomalies Classification: Recommendations From the International Society for the Study of Vascular Anomalies. Pediatrics 2015; 136: e203-e214
  • 6 Sadick M, Müller-Wille R, Wildgruber M. et al. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies. Rofo 2018; 190: 825-835
  • 7 Müller-Wille R, Wildgruber M, Sadick M. et al. Vascular Anomalies (Part II): Interventional Therapy of Peripheral Vascular Malformations. Rofo 2018; DOI: 10.1055/s-0044-101266.
  • 8 Gorman J, Zbarsky SJ, Courtemanche RJM. et al. Image guided sclerotherapy for the treatment of venous malformations. CVIR Endovasc 2018; DOI: 10.1186/s42155-018-0009-1.
  • 9 Sadick M, Dally FJ, Schönberg SO. et al. Strategies in Interventional Radiology: Formation of an Interdisciplinary Center of Vascular Anomalies – Chances and Challenges for Effective and Efficient Patient Management. Röfo 2017; 189: 957-966
  • 10 http://www.diggefa.de - letzter Zugriff 01.06.2019
  • 11 Wojcicki P, Wojcicka K. Epidemiology, Diagnostics and Treatment of Vascular Tumors and Malformations. Adv Clin Exp Med 2014; 23: 475-484
  • 12 Ten Broek RW, Eijkelenboom A, van der Vleuten CJM. et al. Comprehensive molecular and clinicopathological analysis of vascular malformations: A study of 319 cases. Genes Chromosomes Cancer 2019; DOI: 10.1002/gcc.22739.
  • 13 Gilbert P, Dubois J, Giroux MF. et al. New Treatment Approaches to Arteriovenous Malformations. Semin Intervent Radiol 2017; 34: 258-271
  • 14 Wildgruber M, Sadick M, Müller-Wille R. et al. Vascular tumors in infants and adolescents. Insights Imaging 2019; DOI: 10.1186/s13244-019-0718-6.
  • 15 Majewska NK, Stajgis P, Wykretowicz M. et al. Peripheral vascular malformations – modern imaging. Pol J Radiol 2018; 83: 253-259
  • 16 Rusu GM, Ciuce C, Fodor L. et al. Ultrasonographic and imaging appearance of peripheral intraneural vascular anomalies: report of two cases and review of the literature. Med Ultrason 2018; 20: 237-246
  • 17 Mennitt K, Deol M, Gao J. Emergency color Doppler sonography of the extremity artery: A pictorial essay. Clinical Imaging 2017; 42: 240-248
  • 18 Esposito F, Ferrara D, Di Serafino M. et al. Classification and ultrasound findings of vascular anomalies in pediatric age: the essential. Journal of Ultrasound 2018; DOI: 10.1007/s40477-018-0342-1.
  • 19 Johnson AB, Richter GT. Vascular Anomalies. Clin Perinatol 2018; 45: 737-749
  • 20 Prasad NK, Chawla A, Lalezari S. et al. A radiological classification system for intraneural vascular anomalies: assessment of potential for resection with high-resolution MRI. Acta Neurochir 2016; 158: 329-334
  • 21 Schicchi N, Tagliati C, Agliata G. et al. MRI evaluation of peripheral vascular anomalies using time-resolved imaging of contrast kinetics (TRICKS) sequence. La radiologia medica 2018; 123: 563-571
  • 22 https://www.healthcare.siemens.de/magnetic-resonance-imaging/clinical-specialities/body-mri/highlights - letzter Zugriff 01. Juni 2019
  • 23 Hammer S, Uller W, Manger F. et al. Time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla for evaluation of hemodynamic characteristics of vascular malformations: description of distinct subgroups. Eur Radiol 2017; 27: 296-305
  • 24 MacDonald ME, Dolati P, Mitha AP. et al. Flow and pressure measurements in aneurysms and arteriovenous malformations with phase contrast MR imaging. Magn Reson Imaging 2016; 34: 1322-1328
  • 25 Benzar I. A Diagnostic Program of Vascular Tumor and Vascular Malformations in Children According to Modern Classification. Acta Medica 2017; 60: 19-26
  • 26 Henzler T, Vogler N, Lange B. et al. Low dose time-resolved CT-angiography in pediatric patients with venous malformations using 3rd generation dual-source CT: Initial experience. Eur J Radiol Open 2016; 12: 216-222
  • 27 Tekes A, Kalayci TO, Mitchell SE. Congenital Vascular Anomalies: Classification and Terminology. In: Mauro MA, Murphy KP, Thomson KR. (eds) Image Guided Interventions. Philadelphia: Saunders; 2013: 271-283
  • 28 Wildgruber M, Köhler M, Brill R. et al. Impact of low dose settings on radiation exposure during pediatric fluoroscopic guided interventions. Eur J Radiol 2018; 100: 1-6
  • 29 Muehlen I, Kloska SP, Gölitz P. et al. Noninvasive Collateral Flow Velocity Imaging in Acute Ischemic Stroke: Intraindividual Comparison of 4D-CT Angiography with Digital Subtraction Angiography. Röfo 2019; DOI: 10.1055/a-0825-6660.
  • 30 Albrecht MH, Vogl TJ, Wichmann JL. et al. Dynamic 4D-CT Angiography for Guiding Transarterial Chemoembolization: Imapct on the Reduction of Contrast Material, Operator Radiation Exposure, Catheter Consumption, and Diagnostic Confidence. Röfo 2018; 190: 513-520
  • 31 Wohlgemuth WA, Müller-Wille R, Teusch VI. et al. The Retrograde Transvenous Push-through Method: a Novel Treatment of Peripheral Arteriovenous Malformations with Dominant Venous Outflow. Cardiovasc Intervent Radiol 2015; 38: 623-631
  • 32 Puig S, Aref H, Chigot V. et al. Classification of venous malformations in children and implications for sclerotherapy. Pediatr Radiol 2003; 33: 99-103
  • 33 Lee BB, Baumgartner I, Berlien P. et al. Diagnosis and Treatment of Venous Malformations Consensus Document of the International Union of Phlebology (IUP): Updated 2013. International Angiology 2015; 34: 97-149
  • 34 Abdel Razek AAK, Al-Marsafawy H, Elmansy M. et al. Tomography Angiography and Magnetic Resonance Angiography of Congenital Anomalies of Pulmonary Veins. J Comput Assist Tomogr 2019; 43: 399-405
  • 35 Bajwa A, Wesolowski R, Patel A. et al. Assessment of Tissue Perfusion in the Lower Limb, Current Methods and Techniques under Development. Circ Cardiovasc Imaging 2014; 7: 836-843
  • 36 Masthoff M, Helfen A, Claussen J. et al. Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations. JAMA Dermatol 2018; 154: 1457-1462