Die Wirbelsäule 2020; 04(04): 294-308
DOI: 10.1055/a-0968-7160
CME-Fortbildung

Outcome-relevante Faktoren in der Wirbelsäulenchirurgie

Ulrich J. Spiegl
,
Christoph Josten
,
Christoph-E. Heyde

Bei vielen unterschiedlichen Parametern ist eine Beeinflussung des Verlaufs und dementsprechend ein potenzieller Einfluss auf das Outcome von Wirbelsäulenoperationen vorstellbar. Zum einen sind dies individuelle patientenspezifische Voraussetzungen, zum anderen Faktoren, die die präoperative Vorbereitung, die Operation an sich sowie den postoperativen Verlauf beeinflussen. Ziel dieses Artikels ist es, nachgewiesene Outcome-relevanten Faktoren für Wirbelsäulenoperationen aufzuführen und zu strukturieren.

Abstract

Several parameters might influence the outcome after vertebral spine surgeries. In order to find these a systematic literature search was performed. Thereby, a total of 62 articles were selected. All outcome-relevant parameters were categorized into patient-specific, course-specific, and radiologic parameters. Furthermore, scores were included which help to estimate the risk of adverse events and outcome for certain pathologies and/or surgeries. Patient-specific parameters were predominantly the patient age and several specific secondary diagnoses such as diabetes, adipositas, depression, anxiety disorders, and nicotine abuse. Additionally, the patient expectation plays an important role in the subjective outcome assessment. Course-specific parameters are mainly perioperative factors such as surgical experience, particularly in highly demanding vertebral spine surgeries. Furthermore, modern intraoperative equipment such as intraoperative CT and neuromonitoring helps to increase patient safety. The most outcome-relevant radiologic parameters are those which define the sagittal balance. Thereby, a correct sagittal balance is associated with superior clinical outcomes.

Fazit

Outcome-relevante Parameter

Die Outcome-relevanten Parameter wurden eingeteilt in

  • patientenspezifische Faktoren

  • verlaufsspezifische Faktoren

    • präoperativ

    • intraoperativ

    • postoperativ

  • radiologische Faktoren

Zuletzt werden „Scores“ zusammengefasst, mit denen Operationsergebnisse und/oder Komplikationsrisiken abgeschätzt werden können.

Fazit

Take Home Message

Zur Optimierung des subjektiven Behandlungsergebnisses nach Wirbelsäulenoperationen spielt eine korrekte Erwartungshaltung eine entscheidende Rolle. Diese kann über eine ausführliche und wirklichkeitsgetreue Aufklärung sowie Verweise auf sinnvolle Informationsquellen optimiert werden. Die Aufklärung sollte eine realistische Darstellung des Verbesserungspotenzials, nicht jedoch das Ziel einer absoluten Beschwerdefreiheit aufzeigen.

Zudem sollten potenzielle Komplikationen und die Gefahr eines verzögerten Heilverlaufs verständlich übermittelt werden.

Fazit

Take Home Message

Insgesamt ist die Kenntnis dieser Faktoren von herausragender Bedeutung. Nur so lässt sich eine kontinuierliche Optimierung der Patientenaufklärung, Entwicklung von realistischeren Erwartungshaltungen und als Ultimo Ratio die Verbesserung der Behandlungsergebnisse erzielen.

Kernaussagen
  • Zahlreiche Faktoren haben Einfluss auf das Outcome von Wirbelsäulenoperationen. Zur Erfassung dieser erfolgte eine systematische Literaturrecherche, wobei insgesamt 62 Artikel als relevant eingestuft und ausgewählt wurden.

  • Die Outcome-relevanten Faktoren wurden in patientenspezifische Faktoren, verlaufsspezifische Faktoren sowie radiologische Faktoren unterteilt. Zudem wurden Scores aufgeführt, mit deren Hilfe Voraussagen über Komplikationshäufigkeit bzw. das klinische Outcome möglich erschien.

  • Patientenspezifische Faktoren, die einen Einfluss auf das Outcome haben, sind insbesondere das Patientenalter sowie einige Nebenerkrankungen (wie z. B. Diabetes mellitus, Adipositas, Depression, Angststörung, Nikotinabusus).

  • Darüber hinaus scheint die Erwartungshaltung der Patienten einen wichtigen Einfluss auf das subjektive Outcome zu besitzen.

  • Von Seiten der verlaufs- bzw. operationsspezifischen Outcome-relevanten Faktoren hat vor allem die Operation an sich einen hohen Effekt. Dabei spielt insbesondere bei technisch anspruchsvollen Operationen die Erfahrung des Chirurgen eine entscheidende Rolle.

  • Zudem können je nach Pathologie moderne Zusatzverfahren wie das intraoperative CT oder das Neuromonitoring die Patientensicherheit verbessern.

  • Von Seiten der radiologischen Faktoren spielt die Wiederherstellung des korrekten sagittalen Alignements eine wichtige Rolle.



Publication History

Article published online:
29 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hebert JJ, Abraham E, Wedderkopp N. et al. Patients undergoing surgery for lumbar spinal stenosis experience unique courses of pain and disability: A group-based trajectory analysis. PloS one 2019; 14: e0224200
  • 2 Plano X, Ramirez M, Matamalas A. et al. 30-Day unplanned surgery in cervical spondylotic myelopathy surgically treated: a single-center experience. Eur Spine J 2019; 28: 1209-1216
  • 3 Rothrock RJ, Steinberger JM, Badgery H. et al. Frailty status as a predictor of 3-month cognitive and functional recovery following spinal surgery: a prospective pilot study. Spine J 2019; 19: 104-112
  • 4 Madhavan K, Chieng LO, Foong H. et al. Surgical outcomes of elderly patients with cervical spondylotic myelopathy: a meta-analysis of studies reporting on 2868 patients. Neurosurg Focus 2016; 40: E13
  • 5 Bovonratwet P, Bohl DD, Malpani R. et al. Cardiac complications related to spine surgery: timing, risk factors, and clinical effect. J Am Acad Orthop Surg 2019; 27: 256-263
  • 6 Ottesen TD, Malpani R, Galivanche AR. et al. Underweight patients are at just as much risk as super morbidly obese patients when undergoing anterior cervical spine surgery. Spine J 2020; 20: 1085-1095
  • 7 Adogwa O, Elsamadicy AA, Cheng J. et al. Pretreatment of anxiety before cervical spine surgery improves clinical outcomes: a prospective, single-institution experience. World Neurosurg 2016; 88: 625-630
  • 8 Miller JA, Derakhshan A, Lubelski D. et al. The impact of preoperative depression on quality of life outcomes after lumbar surgery. Spine J 2015; 15: 58-64
  • 9 Levin JM, Boyle S, Winkelman RD. et al. Patient-reported allergies are associated with preoperative psychological distress and less satisfying patient experience in a lumbar spine surgery population. Clin Spine Surg 2018; 31: E368-E374
  • 10 Silverstein MP, Miller JA, Xiao R. et al. The impact of diabetes upon quality of life outcomes after lumbar decompression. Spine J 2016; 16: 714-721
  • 11 Skeppholm M, Fransson R, Hammar M. et al. The association between preoperative mental distress and patient-reported outcome measures in patients treated surgically for cervical radiculopathy. Spine J 2017; 17: 790-798
  • 12 Kapetanakis S, Gkantsinikoudis N, Chaniotakis C. et al. Percutaneous transforaminal endoscopic discectomy for the treatment of lumbar disc herniation in obese patients: health-related quality of life assessment in a 2-year follow-up. World Neurosurg 2018; 113: e638-e649
  • 13 Andersen T, Christensen FB, Laursen M. et al. Smoking as a predictor of negative outcome in lumbar spinal fusion. Spine 2001; 26: 2623-2628
  • 14 Pirkle S, Reddy S, Bhattacharjee S. et al. Chronic opioid use is associated with surgical site infection after lumbar fusion. Spine 2020; 45: 837-842
  • 15 Franz EW, Bentley JN, Yee PP. et al. Patient misconceptions concerning lumbar spondylosis diagnosis and treatment. J Neurosurg Spine 2015; 22: 496-502
  • 16 Mancuso CA, Duculan R, Cammisa FP. et al. Sources of patients' expectations of lumbar surgery. Spine 2019; 44: 318-324
  • 17 Schouten R, Lewkonia P, Noonan VK. et al. Expectations of recovery and functional outcomes following thoracolumbar trauma: an evidence-based medicine process to determine what surgeons should be telling their patients. J Neurosurg Spine 2015; 22: 101-111
  • 18 Cushnie D, Thomas K, Jacobs WB. et al. Effect of preoperative symptom duration on outcome in lumbar spinal stenosis: a Canadian Spine Outcomes and Research Network registry study. Spine J 2019; 19: 1470-1477
  • 19 Fritsch CG, Ferreira ML, Maher CG. et al. The clinical course of pain and disability following surgery for spinal stenosis: a systematic review and meta-analysis of cohort studies. Eur Spine J 2017; 26: 324-335
  • 20 Elsharkawy AE, Lange B, Caldas F. et al. Predictors and Long-term Outcome of Sexual Function After Surgical Treatment for Single-level Lumbar Disk Herniation Among Patients in a German Spine Center. Clin Spine Surg 2018; 31: 356-362
  • 21 Vasudevan K, Grossberg JA, Spader HS. et al. Age increases the risk of immediate postoperative dysphagia and pneumonia after odontoid screw fixation. Clin Neurol Neurosurg 2014; 126: 185-189
  • 22 Dorow M, Lobner M, Stein J. et al. Risk factors for postoperative pain intensity in patients undergoing lumbar disc surgery: a systematic review. PloS one 2017; 12: e0170303
  • 23 Childs BR, Nahm NJ, Dolenc AJ. et al. Obesity is associated with more complications and longer hospital stays after orthopaedic trauma. J Orthop Trauma 2015; 29: 504-509
  • 24 Qi M, Xu C, Cao P. et al. Does obesity affect outcomes of multilevel acdf as a treatment for multilevel cervical spondylosis?: A retrospective study. Clin Spine Surg 2020; DOI: 10.1097/BSD.0000000000000964. Online ahead of print
  • 25 Soroceanu A, Burton DC, Oren JH. et al. Medical complications after adult spinal deformity surgery: incidence, risk factors, and clinical impact. Spine 2016; 41: 1718-1723
  • 26 Skeppholm M, Lindgren L, Henriques T. et al. The Discover artificial disc replacement versus fusion in cervical radiculopathy--a randomized controlled outcome trial with 2-year follow-up. Spine J 2015; 15: 1284-1294
  • 27 Glassman SD, Alegre G, Carreon L. et al. Perioperative complications of lumbar instrumentation and fusion in patients with diabetes mellitus. Spine J 2003; 3: 496-501
  • 28 Jorge A, White MD, Agarwal N. Outcomes in socioeconomically disadvantaged patients with spinal cord injury: a systematic review. J Neurosurg Spine 2018; 29: 680-686
  • 29 Eneqvist T, Bulow E, Nemes S. et al. Patients with a previous total hip replacement experience less reduction of back pain following lumbar back surgery. J Orthop Res 2018; 36: 2484-2490
  • 30 Delgado-Lopez PD, Rodriguez-Salazar A, Castilla-Diez JM. „Prehabilitation“ in degenerative spine surgery: A literature review. Neurocirugia 2019; 30: 124-132
  • 31 Liu JM, Deng HL, Chen XY. et al. Risk factors for surgical site infection after posterior lumbar spinal surgery. Spine 2018; 43: 732-737
  • 32 Ahn J, Iqbal A, Manning BT. et al. Minimally invasive lumbar decompression-the surgical learning curve. Spine J 2016; 16: 909-916
  • 33 Abe K, Orita S, Mannoji C. et al. perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine 2017; 42: 55-62
  • 34 Lee BH, Hyun SJ, Han S. et al. Surgical and radiological outcomes after posterior vertebral column resection according to the surgeon's experience. Medicine 2018; 97: e11660
  • 35 Raad M, Puvanesarajah V, Harris A. et al. The learning curve for performing three-column osteotomies in adult spinal deformity patients: one surgeon's experience with 197 cases. Spine J 2019; 19: 1926-1933
  • 36 Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Related Res 2014; 472: 1711-1717
  • 37 Aihara T, Endo K, Sawaji Y. et al. Five-year reoperation rates and causes for reoperations following lumbar microendoscopic discectomy and decompression. Spine 2020; 45: 71-77
  • 38 Pfandler M, Stefan P, Mehren C. et al. Technical and nontechnical skills in surgery: a simulated operating room environment study. Spine 2019; 44: E1396-E1400
  • 39 Wilson LA, Fiasconaro M, Poeran J. et al. The impact of anesthesia and surgical provider characteristics on outcomes after spine surgery. Eur Spine J 2019; 28: 2112-2121
  • 40 Bauer JM, Moore JA, Rangarajan R. et al. Intraoperative CT scan verification of pedicle screw placement in ais to prevent malpositioned screws: safety benefit and cost. Spine Deformity 2018; 6: 662-668
  • 41 Ghadirpour R, Nasi D, Iaccarino C. et al. Intraoperative neurophysiological monitoring for intradural extramedullary spinal tumors: predictive value and relevance of D-wave amplitude on surgical outcome during a 10-year experience. J Neurosurg Spine 2018; 30: 259-267
  • 42 Laratta JL, Ha A, Shillingford JN. et al. Neuromonitoring in spinal deformity surgery: a multimodality approach. Global Spine J 2018; 8: 68-77
  • 43 Tang B, Ji T, Guo W. et al. Which is the better timing between embolization and surgery for hypervascular spinal tumors, the same day or the next day? A retrospective comparative study. Medicine 2018; 97: e10912
  • 44 Awad AW, Almefty KK, Ducruet AF. et al. The efficacy and risks of preoperative embolization of spinal tumors. J Neurointervent Surg 2016; 8: 859-864
  • 45 Ng KKM, Cheung JPY. Is minimally invasive surgery superior to open surgery for treatment of lumbar spinal stenosis? A systematic review. J Orthop Surg 2017; 25: 2309499017716254
  • 46 Goldstein CL, Macwan K, Sundararajan K. et al. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine 2016; 24: 416-427
  • 47 Oichi T, Oshima Y, Chikuda H. et al. In-hospital complication rate following microendoscopic versus open lumbar laminectomy: a propensity score-matched analysis. Spine J 2018; 18: 1815-1821
  • 48 Nolte MT, Basques BA, Louie PK. et al. Patients undergoing revision microdiskectomy for recurrent lumbar disk herniation experience worse clinical outcomes and more revision surgeries compared with patients undergoing a primary microdiskectomy. J Am Acad Orthop Surg 2019; 27: e796-e803
  • 49 Haddad S, Nunez-Pereira S, Pigrau C. et al. The impact of deep surgical site infection on surgical outcomes after posterior adult spinal deformity surgery: a matched control study. Eur Spine J 2018; 27: 2518-2528
  • 50 Feng C, Zhang Y, Chong F. et al. Establishment and implementation of an enhanced recovery after surgery (eras) pathway tailored for minimally invasive transforaminal lumbar interbody fusion surgery. World Neurosurg 2019; 129: e317-e323
  • 51 Greenwood J, McGregor A, Jones F. et al. Rehabilitation Following Lumbar Fusion Surgery: A Systematic Review and Meta-Analysis. Spine 2016; 41: E28-36
  • 52 Bredow J, Eysel P, Olkonomidis S. Postoperatives Management der Belastung und Rehabilitation nach lumbalen Wirbelsäulenoperationen. Orthopäde 2020; 49: 201-210
  • 53 Park Y, Lee SB, Seok SO. et al. Perioperative surgical complications and learning curve associated with minimally invasive transforaminal lumbar interbody fusion: a single-institute experience. Clin Orthop Surg 2015; 7: 91-96
  • 54 Jug M, Kejzar N, Vesel M. et al. Neurological recovery after traumatic cervical spinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 hours versus 8 to 24 hours after injury: a single center experience. J Neurotrauma 2015; 32: 1385-1392
  • 55 Savage JW, Patel AA. Fixed sagittal plane imbalance. Global Spine J 2014; 4: 287-296
  • 56 Ohnishi T, Iwata A, Kanayama M. et al. Impact of spino-pelvic and global spinal alignment on the risk of osteoporotic vertebral collapse. Spine Surg Related Res 2018; 2: 72-76
  • 57 Le Huec JC, Faundez A, Dominguez D. et al. Evidence showing the relationship between sagittal balance and clinical outcomes in surgical treatment of degenerative spinal diseases: a literature review. Int Orthopaed 2015; 39: 87-95
  • 58 Passias PG, Poorman CE, Yang S. et al. Surgical treatment strategies for high-grade spondylolisthesis: a systematic review. Int J Spine Surg 2015; 9: 50
  • 59 Ren B, Gao W, An J. et al. Risk factors of cage nonunion after anterior cervical discectomy and fusion. Medicine 2020; 99: e19550
  • 60 Rao H, Huang Y, Lan Z. et al. Does preoperative t1 slope and cervical lordosis mismatching affect surgical outcomes after laminoplasty in patients with cervical spondylotic myelopathy?. World Neurosurg 2019; 130: e687-e693
  • 61 Ilharreborde B. Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate?. Eur Spine J 2018; 27: 48-58
  • 62 Zhang JT, Meng FT, Wang S. et al. Predictors of surgical outcome in cervical spondylotic myelopathy: focusing on the quantitative signal intensity. Eur Spine J 2015; 24: 2941-2945
  • 63 Haws BE, Khechen B, Bawa MS. et al. The Patient-Reported Outcomes Measurement Information System in spine surgery: a systematic review. J Neurosurg Spine 2019; 30: 405-413
  • 64 McLynn RP, Ondeck NT, Cui JJ. et al. The Rothman Index as a predictor of postdischarge adverse events after elective spine surgery. Spine J 2018; 18: 1149-1156
  • 65 Pellise F, Vila-Casademunt A, Nunez-Pereira S. et al. The Adult Deformity Surgery Complexity Index (ADSCI): a valid tool to quantify the complexity of posterior adult spinal deformity surgery and predict postoperative complications. Spine J 2018; 18: 216-225
  • 66 Mannion AF, Impellizzeri FM, Leunig M. et al. Eurospine 2017 Full Paper Award: Time to remove our rose-tinted spectacles: a candid appraisal of the relative success of surgery in over 4500 patients with degenerative disorders of the lumbar spine, hip or knee. Eur Spine J 2018; 27: 778-788
  • 67 Kim HJ, Jae-Kwang Shim J-K, Youn Y-N. et al. Influence of preoperative hemoglobin a1c on early outcomes in patients with diabetes mellitus undergoing off-pump coronary artery bypass surgery. J Thorac Cardiovasc Surg 2019; DOI: 10.1016/j.jtcvs.2019.01.086. Online ahead of print
  • 68 Loftus TH, Brown MP, Slish JH. et al. Serum levels of prealbumin and albumin for preoperative risk stratification. Nutr Clin Pract 2019; 34: 340-348