Erfahrungsheilkunde 2019; 68(04): 211-216
DOI: 10.1055/a-0953-5583
Praxis
© MVS Medizinverlage Stuttgart GmbH & Co. KG Stuttgart · New York

Multiple Sklerose – Einfluss der Ernährung und des Darmmikrobioms

Uwe Gröber
Further Information

Publication History

Publication Date:
16 August 2019 (online)

Zusammenfassung

Multiple Sklerose (auch Encephalomyelitis disseminata, ED) ist die häufigste chronisch entzündliche Autoimmunerkrankung des zentralen Nervensystems (ZNS). Die Ursachen der Autoimmunerkrankung sind bis heute nicht vollständig geklärt. Die Wissenschaft vermutet jedoch zwischenzeitlich, dass genetische Faktoren nur eine untergeordnete Rolle spielen. Die stetige Zunahme der Diagnoseprävalenz der Multiplen Sklerose in den letzten 30 Jahren wird v. a. in Verbindung gebracht mit einer Dysregulation des Immunsystems durch anthropogene Umweltveränderungen. Industriekost, die reich an gesättigten tierischen Fetten und raffinierten Kohlenhydraten ist, begünstigt die Entwicklung von entzündlichen Erkrankungen. Unsere Ernährung beeinflusst über die Mikroorganismen im Darm die Immunzellen des Gehirns und damit auch den Verlauf von MS.

Abstract

Multiple sclerosis (also called encephalomyelitis disseminata, ED) is the most common chronic inflammatory autoimmune disease of the central nervous system (CNS). The causes of the autoimmune disease are still not fully established. However, scientists now suspect that genetic factors only play a subordinate role. The steady increase of the diagnostic prevalence of multiple sclerosis during the last 30 years has been primarily associated with a dysregulation of the immune system due to anthropogenic environmental changes. Industrial food, which is rich in saturated animal fats and refined carbohydrates, encourages the development of inflammatory diseases. Our nutrition influences the immune cells of the brain via the microorganisms in the intestine and thus also the course of MS.

 
  • Literatur

  • 1 Holstiege J, Steffen A, Goffrier B. et al. Epidemiologie der Multiplen Sklerose – eine populationsbasierte deutschlandweite Studie. Zentralinstitut für die kassenärztliche Versorgung in Deutschland; Versorgungsatlas-Bericht Nr. 17/09 2017. DOI: doi:10.20364/VA-17.09
  • 2 Goodin DS. The epidemiology of multiple sclerosis: Insights to a causal cascade. Handb Clin Neurol 2016; 138: 173-206
  • 3 Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med 2018; 378 (02) 169-180
  • 4 Lehmann PV, Rottlaender A, Kuerten S. The autoimmune pathogenesis of multiple sclerosis. Pharmazie 2015; 70 (01) 5-11
  • 5 Amato MP, Derfuss T, Hemmer B. et al. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult Scler 2017; 1: 1352458516686847 doi:10.1177/1352458516686847
  • 6 Guan Y, Jakimovski D, Ramanathan M. et al. The role of Epstein-Barr virus in multiple sclerosis: From molecular pathophysiology to in vivo imaging. Neural Regen Res 2019; 14 (03) 373-386
  • 7 Kleinewietfeld M, Manzel A, Titze J. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013; 496 (7446) 518-522
  • 8 Handel AE, Williamson AJ, Disanto G. et al. Smoking and multiple sclerosis: An updated meta-analysis. PLoS One 2011; 6 (01) e16149 doi:10.1371/journal.pone.0016149
  • 9 Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord 2017; 14: 35-45
  • 10 Ascherio A, Munger KL, White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 2014; 71 (03) 306-314
  • 11 Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; 21 (06) 495-505
  • 12 Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 2008; 233 (06) 674-688
  • 13 La Rosa F, Clerici M, Ratto D. et al. The Gut-Brain Axis in Alzheimer’s Disease and Omega-3. A Critical Overview of Clinical Trials. Nutrients 2018; 10 (09) pii E1267 doi: 10.3390/nu10091267
  • 14 Menni C, Zierer J, Pallister T. et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep 2017; 7 (01) 11079 doi:10.1038/s41598–017–10382–2
  • 15 Swank RL, Dugan BB. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet 1990; 336 (8706) 37-39
  • 16 Herieka M, Erridge C. High-fat meal induced postprandial inflammation. Mol Nutr Food Res 2014; 58 (01) 136-146
  • 17 Teeman CS, Kurti SP, Cull BJ. et al. Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise. Nutr Metab (London) 2016; 13: 80
  • 18 Haghikia A, Jörg S, Duscha A. et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2015; 43 (04) 817-829
  • 19 Gold R. Multiple Sclerosis – Role of environmental Factors and Nutrition. Akt Neurol 2015; 42: 501-502
  • 20 Esposito S, Bonavita S, Sparaco M. et al. The role of diet in multiple sclerosis: A review. Nutr Neurosci 2018; 21 (06) 377-390
  • 21 Bagur MJ, Murcia MA, Jiménez-Monreal AM. et al. Influence of Diet in Multiple Sclerosis: A Systematic Review. Adv Nutr 2017; 8 (03) 463-472
  • 22 Vitagione P, Mennella I, Ferracane R. et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr 2015; 101 (02) 251-261
  • 23 Shinto L, Marracci G, Baldauf-Wagner S. et al. Omega-3-fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot Essent Fatty Acids 2009; 80 (02/03) 131-136
  • 24 Ramirez-Ramirez V, Macias-Isalas MA, Ortiz GG. et al. Efficacy of fish oil on serum of TNF α, IL-1 β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev 2013; 709493 doi:10.1155/2013/709493
  • 25 Beckett JM, Bird ML, Pittaway JK. et al. Diet and Multiple Sclerosis: Scoping Review of Web-Based Recommendations. Interact J Med Res 2019; 8 (01) e10050 doi:10.2196/10050
  • 26 Allison DB, Bassaganya-Riera J, Burlingame B. et al. Goals in Nutrition Science 2015–2020. Front Nutr 2015; 2: 26 doi:10.3389/fnut.2015.00026
  • 27 Fleck AK, Schuppan D, Wiendl H. et al. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis. Int J Mol Sci 2017; 18 (07) pii E1526 doi:10.3390/ijms18071526
  • 28 Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015; 125 (03) 926-938
  • 29 David LA, Maurice CF, Carmody RN. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505 (7484) 559-563
  • 30 Smits SA, Leach J, Sonnenburg ED. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 2017; 357 (6353) 802-806
  • 31 Calvo-Barreiro L, Eixarch H, Montalban X. et al. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmun Rev 2018; 17 (02) 165-174
  • 32 Bravo JA, Forsythe P, Chew MV. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108 (38) 16050-16055
  • 33 Tilg H, Moschen AR, Kaser A. Obesity and the microbiota. Gastroenterol 2009; 136 (05) 1476-1483
  • 34 Wu GD, Chen J, Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334 (6052) 105-108
  • 35 Cosorich I, Dalla-Costa G, Sorini C. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv 2017; 3 (07) e1700492 doi:10.1126/sciadv.1700492
  • 36 Erny D, Hrabě de Angelis AL, Jaitin D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18 (07) 965-977
  • 37 Weinstein LI, Revuelta A, Pando RH. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann NY Acad Sci 2015; 1351: 39-51
  • 38 Berer K, Gerdes LA, Cekanaviciute E. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 2017; 114 (40) 10719-10724
  • 39 Christ A, Günther P, Lauterbach MAR. et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell 2018; 172 (01/02) 162-175