Subscribe to RSS
DOI: 10.1055/a-0940-5452
Demenz und metabolisch-vaskuläre Risikofaktoren: Möglichkeiten der Prävention
Dementia and Metabolic-Vascular Risk Factors: Strategies for PreventionPublication History
Publication Date:
27 August 2019 (online)
Zusammenfassung
Die Prävalenz der Demenz ist in den letzten Jahren gestiegen und nimmt mit dem Alter exponentiell zu. In Deutschland sind ca. 1,7 Mio. Menschen betroffen, die jährliche Neuerkrankungsrate wird auf 300 000 geschätzt. Der Begriff Demenz umfasst verschiedene Krankheitsformen mit unterschiedlichen Ätiologien. Dem demenziellen Syndrom des höheren Lebensalters liegen meist vaskuläre und metabolische Risikofaktoren zugrunde, die der klinischen Demenzmanifestation um Dekaden vorausgehen. Dies bietet ein enormes Zeitfenster für die Prävention, welche insbesondere vor dem Hintergrund weitgehend fehlender kurativer pharmakologischer Ansätze eine große Bedeutung erlangt. Lebensstilmaßnahmen, die eine hohe Nahrungsqualität und eine ausreichende Versorgung mit Omega-3-Fettsäuren, körperliche Aktivität und erholsamen Schlaf beinhalten, verbessern metabolische und vaskuläre Risikofaktoren und mindern das Demenzrisiko. Da multimodale Konzepte synergistisch wirken, versprechen sie den größten präventiven Nutzen.
Abstract
The prevalence of dementias is on the rise, increases exponentially with age and constitutes a major healthcare burden nationally and worldwide. Dementias are clinically heterogeneous and encompass numerous etiologies. Noteworthy, late onset dementias are closely related to vascular and metabolic risk factors in midlife. Cardiometabolic risk factors commonly precede the onset of cognitive decline for decades. This opens a huge window for prevention. Given the lack of established pharmacological options for treatment of most dementias, preventive strategies are of utmost importance. Several factors have been identified that have the potential to preserve a healthy metabolic phenotype and to attenuate the onset of late onset dementias. Evidence exists for low-risk lifestyle factors including a real food dietary pattern, an adequate supply with long chain omega-3 fatty acids, regular physical activity and restorative sleep, with multimodal concepts showing the greatest cumulative benefit.
-
Literatur
- 1 Livingston G, Sommerlad A, Orgeta V. et al. Dementia prevention, intervention, and care. Lancet 2017; 390: 2673-2734
- 2 Araújo J, Cai J, Stevens J. Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009–2016. Metab Syndr Relat Disord 2019; 17: 46-52
- 3 Gottesman RF, Schneider ALC, Zhou Y. et al. Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition. JAMA 2017; 317: 1443
- 4 Callisaya ML, Beare R, Moran C. et al. Type 2 diabetes mellitus, brain atrophy and cognitive decline in older people: a longitudinal study. Diabetologia 2019; 62: 448-458
- 5 de la Monte SM, Tong M, Daiello LA. et al. Early-Stage Alzheimer’s Disease Is Associated with Simultaneous Systemic and Central Nervous System Dysregulation of Insulin-Linked Metabolic Pathways. J Alzheimers Dis 2019; 68: 657-668 , DOI:10.3233/JAD-180906
- 6 Samieri C, Perier MC, Gaye B. et al. Association of Cardiovascular Health Level in Older Age With Cognitive Decline and Incident Dementia. JAMA 2018; 320: 657
- 7 Cunnane SC, Courchesne-Loyer A, St-Pierre V. et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease: Brain glucose and ketone uptake in Alzheimer’s disease. Ann N Y Acad Sci 2016; 1367: 12-20
- 8 Kullmann S, Heni M, Hallschmid M. et al. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiological Reviews 2016; 96: 1169-1209
- 9 Hooshmand B, Rusanen M, Ngandu T. et al. Serum Insulin and Cognitive Performance in Older Adults: A Longitudinal Study. Am J Med 2019; 132: 367-373
- 10 Croteau E, Castellano CA, Fortier M. et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol 2018; 107: 18-26
- 11 Willette AA, Bendlin BB, Starks EJ. et al. Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle-Aged Adults at Risk for Alzheimer Disease. JAMA Neurol 2015; 72: 1013
- 12 Ngandu T, Lehtisalo J, Solomon A. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 2015; 385: 2255-2263
- 13 Köbe T, Witte AV, Schnelle A. et al. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage 2016; 131: 226-238
- 14 Solfrizzi V, Custodero C, Lozupone M. et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J Alzheimers Dis 2017; 59: 815-849
- 15 Cao L, Tan L, Wang HF. et al. Dietary Patterns and Risk of Dementia: a Systematic Review and Meta-Analysis of Cohort Studies. Mol Neurobiol 2016; 53: 6144-6154
- 16 Morris MC, Tangney CC, Wang Y. et al. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s & Dementia 2015; 11: 1007-1014
- 17 Kerti L, Witte AV, Winkler A. et al. Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology 2013; 81: 1746-1752
- 18 Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 2015; 134: 7-20
- 19 Youm YH, Nguyen KY, Grant RW. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine 2015; 21: 263-269
- 20 Bredesen D, Amos E, Canick J. et al. Reversal of cognitive decline in Alzheimer’s disease. Aging 2016; 8: 1250-1258
- 21 Zhang Y, Chen J, Qiu J. et al. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr 2016; 103: 330-340
- 22 Samieri C, Morris MC, Bennett DA. et al. Fish Intake, Genetic Predisposition to Alzheimer Disease, and Decline in Global Cognition and Memory in 5 Cohorts of Older Persons. Am J Epidemiol 2018; 187: 933-940
- 23 Bakre AT, Chen R, Khutan R. et al. Association between fish consumption and risk of dementia: a new study from China and a systematic literature review and meta-analysis. Public Health Nutr 2018; 21: 1921-1932
- 24 Lukaschek K, von Schacky C, Kruse J. et al. Cognitive Impairment Is Associated with a Low Omega-3 Index in the Elderly: Results from the KORA-Age Study. Dement Geriatr Cogn Disord 2016; 42: 236-245
- 25 Kleber ME, Delgado GE, Lorkowski S. et al. Omega-3 fatty acids and mortality in patients referred for coronary angiography. The Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis 2016; 252: 175-181
- 26 Külzow N, Witte AV, Kerti L. et al. Impact of Omega-3 Fatty Acid Supplementation on Memory Functions in Healthy Older Adults. J Alzheimers Dis 2016; 51: 713-725
- 27 Rice HB, Bernasconi A, Maki KC. et al. Conducting omega-3 clinical trials with cardiovascular outcomes: Proceedings of a workshop held at ISSFAL 2014. PLEFA 2016; 107: 30-42
- 28 Eriksdotter M, Vedin I, Falahati F. et al. Plasma Fatty Acid Profiles in Relation to Cognition and Gender in Alzheimer’s Disease Patients During Oral Omega-3 Fatty Acid Supplementation: The OmegAD Study. J Alzheimers Dis 2015; 48: 805-812
- 29 Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862: 1068-1078
- 30 Jernerén F, Elshorbagy AK, Oulhaj A. et al. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr 2015; 102: 215-221
- 31 Oulhaj A, Jernerén F, Refsum H. et al. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment. J Alzheimers Dis 2016; 50: 547-557
- 32 Lee J. The Relationship Between Physical Activity and Dementia: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Gerontol Nurs 2018; 44: 22-29
- 33 Rovio S, Kåreholt I, Helkala EL. et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 2005; 4: 705-711
- 34 Kemps H, Kränkel N, Dörr M. et al. Exercise training for patients with type 2 diabetes and cardiovascular disease: What to pursue and how to do it. A Position Paper of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol 2019
- 35 Maliszewska-Cyna E, Lynch M, Oore JJ. et al. The Benefits of Exercise and Metabolic Interventions for the Prevention and Early Treatment of Alzheimer’s Disease. Curr Alzheimer Res 2017; 14: 47-60
- 36 Leal LG, Lopes MA, Batista ML. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front Physiol 2018; 9: 1307 , doi:10.3389/fphys.2018.01307
- 37 Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res Rev 2018; 48: 109-121
- 38 Reutrakul S, Van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metab Clin Exp 2018; 84: 56-66
- 39 Irwin MR, Vitiello MV. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol 2019; 18: 296-306
- 40 Taylor MK, Sullivan DK, Mahnken JD. et al. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 2018; 4: 28-36