Planta Med 2019; 85(09/10): 781-796
DOI: 10.1055/a-0915-2550
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

The Terroir of Cannabis: Terpene Metabolomics as a Tool to Understand Cannabis sativa Selections

Elizabeth M. Mudge
1   Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
2   Natural Health & Food Products Research, British Columbia Institute of Technology, Burnaby, British Columbia, Canada
,
Paula N. Brown
2   Natural Health & Food Products Research, British Columbia Institute of Technology, Burnaby, British Columbia, Canada
3   Biology, University of British Columbia, Kelowna, British Columbia, Canada
,
Susan J. Murch
1   Chemistry, University of British Columbia, Kelowna, British Columbia, Canada
› Author Affiliations
Further Information

Publication History

received 04 February 2019
revised 17 April 2019

accepted 30 April 2019

Publication Date:
16 May 2019 (online)

Abstract

The phytochemical diversity of Cannabis chemovars is not well understood, and many chemovars were created in informal breeding programs without records of parentage or the criteria for selection. Key criteria for selection sometimes included aroma notes and visual cues, which some breeders associated with pharmacological activity. We hypothesized that the process of selection for scents believed to be related to specific tetrahydrocannabinol levels has resulted in modified terpene biosynthesis in these chemovars. Thirty-two cannabinoids, 29 monoterpenes and 38 sesquiterpenes were measured in 33 chemovars from 5 licensed producers. A classification system based on cannabinoid content was used with targeted metabolomic tools to determine relationships in the phytochemistry. Three monoterpenes, limonene, β-myrcene, and α-pinene, and two sesquiterpenes, caryophyllene and humulene, were abundant in the majority of chemovars. Nine terpenes were present in tetrahydrocannabinol-dominant chemovars. Three monoterpenes and four sesquiterpenes were predominantly found in cannabidiol-containing chemovars. Low abundance terpenes may have been the aromatic cues identified by breeders. The medicinal activity of some of the terpenes is likely to contribute to the pharmacological effect of specific chemovars. Together, these data demonstrate the synergy of compounds in Cannabis chemovars and point to the need for additional research to understand the phytochemical complexity.

Supporting Information

 
  • References

  • 1 Clarke RC, Merlin MD. Cannabis domestication, breeding history, present-day genetic diversity, and future prospects. CRC Crit Rev Plant Sci 2016; 35: 293-327
  • 2 Small E. Evolution and classification of Cannabis sativa (Marijuana, Hemp) in relation to human utilization. Bot Rev 2015; 81: 189-294
  • 3 Lewis MA, Russo EB, Smith KM. Pharmacological foundations of Cannabis chemovars. Planta Med 2018; 84: 225-233
  • 4 Gilbert AN, DiVerdi JA. Consumer perceptions of strain differences in Cannabis aroma. PLoS One 2018; 13: 1-14
  • 5 Russo EB. The case for the entourage effect and conventional breeding of clinical cannabis: No “strain,” no gain. Front Plant Sci 2019; 9: 1969
  • 6 Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J, Butler L, Page JE, Myles S. The genetic structure of marijuana and hemp. PLoS One 2015; 10: 1-9
  • 7 Soler S, Gramazio P, Figàs MR, Vilanova S, Rosa E, Llosa ER, Borràs D, Plazas M, Prohens J. Genetic structure of Cannabis sativa var. indica cultivars based on genomic SSR (gSSR) markers: Implications for breeding and germplasm management. Ind Crops Prod 2017; 104: 171-178
  • 8 Arrhenius SP, McCloskey LP, Sylvan M. Chemical markers for aroma of Vitis vinifera Var. Chardonnay regional wines. J Agric Food Chem 1996; 44: 1085-1090
  • 9 Inui T, Tsuchiya F, Ishimaru M, Oka K, Komura H. Different beers with different hops. Relevant compounds for their aroma characteristics. J Agric Food Chem 2013; 61: 4758-4764
  • 10 Flores-Sanchez IJ, Verpoorte R. Secondary metabolism in Cannabis . Phytochem Rev 2008; 7: 615-639
  • 11 ElSohly MA, Gul W. Constituents of Cannabis sativa . In: Pertwee R. editor Handbook of Cannabis. Oxford UK: Oxford University Press; 2014
  • 12 Turner CE, Elsohly MA, Boeren EG. Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 1980; 43: 169-234
  • 13 Giese MW, Lewis MA, Giese L, Smith KM. Development and validation of a reliable and robust method for the analysis of cannabinoids and terpenes in Cannabis . J AOAC Int 2015; 98: 1503-1522
  • 14 Booth JK, Page JE, Bohlmann J. Terpene synthases from Cannabis sativa . PLoS One 2017; 12: 1-21
  • 15 Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol 2000; 18: 1157-1161
  • 16 Turi CE, Finley J, Shipley PR, Murch SJ, Brown PN. Metabolomics for phytochemical discovery: development of statistical approaches using a cranberry model system. J Nat Prod 2015; 78: 953-966
  • 17 Brown PN, Murch SJ, Shipley P. Phytochemical diversity of cranberry (Vaccinium macrocarpon Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. J Agric Food Chem 2012; 60: 261-271
  • 18 Turi CE, Murch SJ. Targeted and untargeted phytochemistry of Ligusticum canbyi: indoleamines, phthalides, antioxidant potential, and use of metabolomics as a hypothesis-generating technique for compound discovery. Planta Med 2013; 79: 1370-1379
  • 19 Turi CE, Axwik KE, Smith A, Jones AMP, Saxena PK, Murch SJ. Galanthamine, an anticholinesterase drug, effects plant growth and development in Artemisia tridentate Nutt. via modulation of auxin and neutrotransmitter signaling. Plant Signal Behav 2014; 9: e28645
  • 20 Brown PN, Turi CE, Shipley PR, Murch SJ. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med 2012; 78: 630-640
  • 21 Murch SJ, Rupasinghe HPV, Goodenowe D, Saxena PK. A metabolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi) genotypes: discovery of novel compounds. Plant Cell Rep 2004; 23: 419-425
  • 22 Mudge EM, Murch SJ, Brown PN. Chemometric Analysis of Cannabinoids: Chemotaxonomy and Domestication Syndrome. Sci Rep 2018; 8: 13090
  • 23 Breitmaier E. Terpenes: flavors, fragrances, pharmaca, pheromones. Morlenbach, Germany: Wiley-VCH; 2006
  • 24 Wu Y, Duan S, Zhao L, Gao Z, Luo M, Song S, Xu W, Zhang C, Ma C, Wang S. Aroma characterization based on aromatic series analysis in table grapes. Sci Rep 2016; 6: 1-16
  • 25 Elzinga S, Fischedick JT. Cannabinoids and terpenes as chemotaxonomic markers in Cannabis . Nat Prod Chem Res 2015; 3: 4
  • 26 Hazekamp A, Fischedick J. Cannabis – from cultivar to chemovar. Drug Test Anal 2012; 4: 660-667
  • 27 Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010; 71: 2058-2073
  • 28 Jin D, Jin S, Yu Y, Lee C, Chen J. Classification of Cannabis cultivars marketed in Canada for medical purposes by quantification of cannabinoids and terpenes using HPLC-DAD and GC-MS. J Anal Bioanal Tech 2017; 8: 1-9
  • 29 Hazekamp A, Tejkalová K, Papadimitriou S. Cannabis: from cultivar to chemovar II–a metabolomics approach to Cannabis classification. Cannabis Cannabinoid Res 2016; 1: 202-215
  • 30 Mediavilla V, Steinemann S. Essential oil of Cannabis sativa L. strains. J Intl Hemp Assoc 1997; 4: 82-84
  • 31 Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 2011; 163: 1344-1364
  • 32 McPartland JM. Cannabis systematics at the levels of family, genus, and species. Cannabis Cannabinoid Res 2018; 3: 203-212
  • 33 Yun J. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release. Phytomedicine 2014; 21: 883-887
  • 34 Do Vale TG, Furtado EC, Santos JG, Viana GSB. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (mill.) N.E. Brown. Phytomedicine 2002; 9: 709-714
  • 35 Kim D, Lee H, Jeon Y, Han Y, Kee J, Kim H, Shin H, Kang J, Lee B, Kim S, Kim S, Park S, Choi B, Park S, Um J, Hong S. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and NF-kB pathway in mouse peritoneal macrophages. Am J Chin Med 2015; 43: 731-742
  • 36 Freitas J, Presgrave O, Fingola F, Menezes M, Paumgartten F. Effect of beta-myrcene on pentobarbital sleeping time. Brazilian J Med Biol Res 1993; 26: 519-523
  • 37 Macedo E, Santos W, Sousa Neto BP, . Lopes E, Piauilino C, Cunha F, Sousa D, Oliveira F, Almeida F. Association of terpinolene and diclofenac presents antinociceptive and anti-inflammatory synergistic effects in a model of chronic inflammation. Brazilian J Med Biol Res 2016; 49: e5103
  • 38 Ito K, Ito M. The sedative effect of inhaled terpinolene in mice and its structure-activity relationships. J Nat Med 2013; 67: 833-837
  • 39 Linck VM, da Silva AL, Figueiró M, Caramão EB, Moreno PRH, Elisabetsky E. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine 2010; 17: 679-683
  • 40 Bonjardim L, Cunha E, Guimaraes A, Santana M, Oliveira M, Serafini M, Araujo A, Antoniolli A, Cavalcanti S, Santos M, Quintans-Junior L. Evaluations of the anti-inflammatory and antinociceptive properties of p-cymene in mice. Zeitschrift für Naturforsch 2012; 67: 15-21
  • 41 de Sousa DP, Nóbrega FFF, de Morais LCSL, de Almeida RN. Evaluation of the anticonvulsant activity of terpinen-4-ol. Z Naturforsch C 2009; 64: 1-5
  • 42 Calcabrini A, Stringaro A, Toccacieli L, Meschini S, Marra M, Colone M, Salvatore G, Mondello F, Arancia G, Molinari A. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J Invest Dermatol 2004; 122: 349-360
  • 43 Garg P, Sardana S. Pharmacological and therapeutic effects of Ocimum sanctum . Eur J Pharm Med Res 2016; 3: 637-640
  • 44 Fu Z, Wang H, Hu X, Sun Z, Han C. The pharmacological properties of salvia essential oils. J Appl Pharm Sci 2013; 3: 122-127
  • 45 Cascaes MM, Guilhon GMSP, de Aguiar Andrade EH, das Graças Bichara Zoghbi M, da Silva Santos L. Constituents and pharmacological activities of Myrcia (Myrtaceae): A review of an aromatic and medicinal group of plants. Int J Mol Sci 2015; 16: 23881-23904
  • 46 Khair-ul-Bariyah S, Ahmed D, Ikram M. Ocimum basilicum: a review on phytochemical and pharmacological studies. Pakistan J Chem 2012; 2: 78-85
  • 47 Bahi A, Al Mansouri S, Al Memari E, Al Ameri M, Nurulain SM, Ojha S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol Behav 2014; 135: 119-124
  • 48 Rogerio AP, Andrade EL, Leite DFP, Figueiredo CP, Calixto JB. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation. Br J Pharmacol 2009; 158: 1074-1087
  • 49 Takemoto H, Yagura T, Ito M. Evaluation of volatile components from spikenard: valerena-4,7(11)-diene is a highly active sedative compound. J Nat Med 2009; 63: 380-385
  • 50 Peng W, Han T, Xin WB, Zhang XG, Zhang QY, Jia M, Qin LP. Comparative research of chemical constituents and bioactivities between petroleum ether extracts of the aerial part and the rhizome of Atractylodes macrocephala . Med Chem Res 2011; 20: 146-151
  • 51 Pang Y, Wang D, Fan Z, Chen X, Yu F, Hu X, Wang K, Yuan L. Blumea balsamifera–a phytochemical and pharmacological review. Molecules 2014; 19: 9453-9477
  • 52 Al-Snafi PDAE. The pharmacological and therapeutic importance of Eucalyptus species grown in Iraq. IOSR J Pharm 2017; 7: 72-91
  • 53 Hieu LD, Hoi TM, Thang TD, Eresanya OI. Fonenol, the main constituent of the essential oil of the leaf of Piper longum L. Am J Essent Oil Nat Prod 2018; 6: 16-19
  • 54 de Albuquerque IL, Alves LA, Lemos TLG, Dorneles CA, de Morais MO. Constituents of the essential oil of brazilian green propolis from Brazil. J Essent Oil Res 2008; 20: 414-415
  • 55 Chen W, Lu Y, Wu J, Gao M, Wang A, Xu B. Beta-elemene inhibits melanoma growth and metastasis via suppressing vascular endothelial growth factor-mediated angiogenesis. Cancer Chemother Pharmacol 2011; 67: 799-808
  • 56 Tsuneki H, Ma EL, Kobayashi S, Sekizaki N, Maekawa K, Sasaoka T, Wang MW, Kimura I. Antiangiogenic activity of β-eudesmol in vitro and in vivo . Eur J Pharmacol 2005; 512: 105-115
  • 57 Orellana-Paucar AM, Serruys ASK, Afrikanova T, Maes J, De Borggraeve W, Alen J, León-Tamariz F, Wilches-Arizábala IM, Crawford AD, de Witte PAM, Esguerra CV. Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy Behav 2012; 24: 14-22
  • 58 Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, Di Marzo V, Jutras-Aswad D, Notcutt WG, Martinez-Orgado J, Robson PJ, Rohrback BG, Thiele E, Whalley B, Friedman D. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014; 55: 791-802
  • 59 Meyer RS, Duval AE, Jensen HR. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 2012; 196: 29-48
  • 60 Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 2006; 9: 297-304
  • 61 Mudge EM, Liu Y, Lund JA, Brown PN. Single-laboratory validation for the determination of flavonoids in Hawthorn leaves and finished products by LC-UV. Planta Med 2016; 82: 1487-1492
  • 62 Babushok VI, Linstrom PJ, Zenkevich IG. Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data 2011; 40: 043101
  • 63 Ruckebusch C, Blanchet L. Multivariate curve resolution: a review of advanced and tailored applications and challenges. Anal Chim Acta 2013; 765: 28-36
  • 64 Boyd E, Sheppard P. Nutmeg oil and camphene as inhaled expectorants. Arch Otolaryngol 1970; 92: 372-378
  • 65 Galdino PM, Nascimento MVM, Florentino IF, Lino RC, Fajemiroye JO, Chaibub BA, de Paula JR, de Lima TCM, Costa EA. The anxiolytic-like effect of an essential oil derived from Spiranthera odoratissima A. St. Hil. leaves and its major component, β-caryophyllene, in male mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38: 276-284
  • 66 Katsuyama S, Mizoguchi H, Kuwahata H, Komatsu T, Nagaoka K, Nakamura H, Bagetta G, Sakurada T, Sakurada S. Involvement of peripheral cannabinoid and opioid receptors in β-caryophyllene-induced antinociception. Eur J Pain 2013; 17: 664-675
  • 67 Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, Pianowski LF, Calixto JB. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea . Eur J Pharmacol 2007; 569: 228-236
  • 68 Leonhardt V, Leal-Cardoso JH, Lahlou S, Albuquerque AAC, Porto RS, Celedônio NR, Oliveira AC, Pereira RF, Silva LP, Garcia-Teófilo TMN, Silva APFS, Magalhães PJC, Duarte GP, Coelho-De-Souza AN. Antispasmodic effects of essential oil of Pterodon polygalaeflorus and its main constituent β-caryophyllene on rat isolated ileum. Fundam Clin Pharmacol 2010; 24: 749-758
  • 69 Cho JY, Chang HJ, Lee SK, Kim HJ, Hwang JK, Chun HS. Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of β-caryophyllene, a sesquiterpene. Life Sci 2007; 80: 932-939
  • 70 Him A, Ozbek H, Turel I, Oner AC. Antinociceptive activity of alpha-pinene and fenchone. Pharmacol Online 2008; 369: 363-369
  • 71 El Hadri A, del Río MÁ, Sanz J, Coloma AG, Idaomar M, Ozonas BR, González JB, Reus MI. Cytotoxic activity of α-humulene and trans-caryophyllene from Salvia officinalis in animal and human tumor cells. Anal Real Acad Nal Farm 2010; 76: 343-356
  • 72 Miller JA, Lang JE, Ley M, Nagle R, Hsu CH, Thompson PA, Cordova C, Waer A, Chow HHS. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer. Cancer Prev Res 2013; 6: 577-584
  • 73 Murali R, Karthikeyan A, Saravanan R. Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol 2013; 112: 175-181
  • 74 Paumgartten FJ, Delgado IF, Alves EN, Nogueira AC, de-Farias RC, Neubert D. Single dose toxicity study of β-myrcene, a natural analgesic substance. Brazilian J Med Biol Res 1990; 23: 873-877
  • 75 Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 2011; 27: 447-453
  • 76 Satou T, Kasuya H, Maeda K, Koike K. Daily inhalation of α-pinen in mice: effects on behavior and organ accumulation. Phyther Res 2014; 28: 1284-1287
  • 77 Guzmán-Gutiérrez SL, Bonilla-Jaime H, Gómez-Cansino R, Reyes-Chilpa R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci 2015; 128: 24-29
  • 78 De Oliveira MGB, Marques RB, De Santana MF, Santos ABD, Brito FA, Barreto EO, De Sousa DP, Almeida FRC, Badauê-Passos D, Antoniolli ÂR, Quintans-Júnior LJ. α-Terpineol reduces mechanical hypernociception and inflammatory response. Basic Clin Pharmacol Toxicol 2012; 111: 120-125
  • 79 Souza R, Cardoso M, Menezes C, Silva J, De Sousa D, Batista J. Gastroprotective activity of α-terpineol in two experimental models of gastric ulcer in rats. Daru 2011; 19: 277-281
  • 80 Nam JH, Nam DY, Lee DU. Valencene from the Rhizomes of Cyperus rotundus Inhibits Skin Photoaging-Related Ion Channels and UV-Induced Melanogenesis in B16F10 Melanoma Cells. J Nat Prod 2016; 79: 1091-1096
  • 81 Tsoyi K, Jang HJ, Lee YS, Kim YM, Kim HJ, Seo HG, Lee JH, Kwak JH, Lee DU, Chang KC. (+)-Nootkatone and (+)-valencene from rhizomes of Cyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction. J Ethnopharmacol 2011; 137: 1311-1317
  • 82 Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 2010; 17: 149-151
  • 83 Park KR, Nam D, Yun HM, Lee SG, Jang HJ, Sethi G, Cho SK, Ahn KS. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett 2011; 312: 178-188
  • 84 Tyagi AK, Prasad S, Yuan W, Li S, Aggarwal BB. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin. Invest New Drugs 2015; 33: 1175-1186
  • 85 Hsu HC, Yang WC, Tsai WJ, Chen CC, Huang HY, Tsai YC. α-Bulnesene, a novel PAF receptor antagonist isolated from Pogostemon cablin . Biochem Biophys Res Commun 2006; 345: 1033-1038
  • 86 Quintans Jde S, Menezes PP, Santos MRV, Bonjardim LR, Almeida JRGS, Gelain DP, Araújo AADS, Quintans-Júnior LJ. Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine 2013; 20: 436-440
  • 87 de Oliveira TM, de Carvalho RBF, da Costa IHF, de Oliveira GAL, de Souza AA, de Lima SG, de Freitas RM. Evaluation of p-cymene, a natural antioxidant. Pharm Biol 2015; 53: 423-428
  • 88 Seo MJ, Kim SJ, Kang TH, Rim HK, Jeong HJ, Um JY, Hong SH, Kim HM. The regulatory mechanism of β-eudesmol is through the suppression of caspase-1 activation in mast cell-mediated inflammatory response. Immunopharmacol Immunotoxicol 2011; 33: 178-185
  • 89 Plengsuriyakarn T, Karbwang J, Na-Bangchang K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clin Exp Pharmacol Physiol 2015; 42: 293-304
  • 90 Kimura Y, Sumiyoshi M. Effects of an Atractylodes lancea rhizome extract and a volatile component β-eudesmol on gastrointestinal motility in mice. J Ethnopharmacol 2012; 141: 530-536
  • 91 Chiou LC, Ling JY, Chang CC. Chinese herb constituent β-eudesmol alleviated the electroshock seizures in mice and electrographic seizures in rat hippocampal slices. Neurosci Lett 1997; 231: 171-174
  • 92 Ohara K, Fukuda T, Ishida Y, Takahashi C, Ohya R, Katayama M, Uchida K, Tominaga M, Nagai K. β-Eudesmol, an oxygenized sesquiterpene, stimulates appetite via TRPA1 and the autonomic nervous system. Sci Rep 2017; 7: 15785
  • 93 Peana AT, DʼAquila PS, Chessa ML, Moretti MDL, Serra G, Pippia P. (−)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol 2003; 460: 37-41
  • 94 Kuroda K, Inoue N, Ito Y, Kubota K, Sugimoto A, Kakuda T, Fushiki T. Sedative effects of the jasmine tea odor and (R)-(−)-linalool, one of its major odor components, on autonomic nerve activity and mood states. Eur J Appl Physiol 2005; 95: 107-114
  • 95 Milde J, Elstner EF, Graßmann J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, γ-terpinene, and ascorbic acid. Phytomedicine 2004; 11: 105-113
  • 96 Passos F, Lopes E, de Araújo J, de Sousa D, Veras L, Leite J, Almeida F. Involvement of Cholinergic and Opioid System in γ-Terpinene-Mediated Antinociception. Evid Based Complement Alternat Med 2015; 2015: 829414
  • 97 Giwanon R, Thubthimthed S, Rerk-am U, Sunthorntanasart T. Antimicrobial activity of terpinen-4-ol and sabinene. Thai J Pharm Sci 2000; 24: 27
  • 98 Lahlou S, Interaminense LF, Leal-Cardoso JH, Duarte GP. Antihypertensive effects of the essential oil of Alpinia zerumbet and its main constituent, terpinen-4-ol, in DOCA-salt hypertensive conscious rats. Fundam Clin Pharmacol 2003; 17: 323-330
  • 99 Tang WT, Fang MF, Liu X, Yue M. Simultaneous Quantitative and Qualitative Analysis of Flavonoids from Ultraviolet-B Radiation in Leaves and Roots of Scutellaria baicalensis Georgi Using LC-UV-ESI-Q/TOF/MS. J Anal Methods Chem 2014; 2014: 643879
  • 100 Ringrose P, Parr M, McLaren M. Effects of anti-inflammatory and other compounds on the release of lysosomal enzymes from macrophages. Biochem Pharmacol 1975; 24: 607-614