Pneumologie 2019; 73(11): 651-669
DOI: 10.1055/a-0914-9566
Symposiumsbericht
© Georg Thieme Verlag KG Stuttgart · New York

Expertentreffen COPD: Lunge und Herz – ziemlich oft gemeinsam krank![*]

Expert Workshop COPD: Lungs and Heart – Quite Often Ill Together
B. Jany
 1   ehem. Medizinische Klinik, Klinik für Pneumologie und Beatmungsmedizin, Klinikum Würzburg Mitte, Würzburg
,
R. Bals
 2   Pneumologie, Allergologie, Beatmungsmedizin, Universitätsklinikum des Saarlandes
,
M. Dreher
 3   Klinik für Pneumologie und Internistische Intensivmedizin, Medizinische Klinik V, Universitätsklinikum Aachen
,
M. Held
 4   Missioklinik, Klinikum Würzburg Mitte, Zentrum für Thoraxmedizin Würzburg, Medizinische Klinik mit Schwerpunkt Pneumologie und Beatmungsmedizin
,
L. Jany
 5   Psychologische Praxis, Würzburg
,
A. Rembert Koczulla
 6   Fachzentrum für Pneumologie, Schön Klinik Berchtesgadener Land, und Universitätsklinikum Marburg
,
M. Pfeifer
 7   Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg und Zentrum für Pneumologie, Klinik Donaustauf
,
W. Randerath
 8   Klinik für Pneumologie und Allergologie, Krankenhaus Bethanien, Solingen
,
H. Watz
 9   Pneumologisches Forschungsinstitut an der LungenClinic Großhansdorf
,
H. Wilkens
10   Klinik für Innere Medizin V, Universitätsklinikum des Saarlandes, Homburg/Saar
,
G. Steinkamp
11   Medizinisch-wissenschaftliches Publizieren, Schwerin
› Author Affiliations
Further Information

Publication History

eingereicht15 April 2019

akzeptiert nach Revision28 July 2019

Publication Date:
09 September 2019 (online)

Zusammenfassung

Pneumologen sollten immer auch an das Herz denken, wenn sie Patienten mit pulmonalen Erkrankungen diagnostizieren und therapieren. Dies gilt besonders für die COPD, aber auch eine ganze Reihe anderer pneumologischer Krankheitsbilder. Auf dem Workshop „Luftschlösser“, der wieder im Februar 2019 in Wiesbaden abgehalten wurde, diskutierten die Teilnehmer die vielfältigen Interaktionen von Lunge und Herz und deren Bedeutung für die Therapie. Ausgehend von pathophysiologischen Überlegungen wurden die psychosozialen Auswirkungen des Kardinalsymptoms Dyspnoe für Patienten sowohl mit Lungen- als auch Herzerkrankungen deutlich. Eine besondere diagnostische und therapeutische Herausforderung liegt im simultanen Auftreten von pulmonalen und kardialen Krankheiten beim individuellen Patienten. So wurde gezeigt, wie häufig die Komorbidität Herzinfarkt bei COPD übersehen wird – und vice versa. Dass auch Asthmatiker häufiger eine koronare Herzerkrankung oder eine Herzinsuffizienz aufweisen, ist im klinischen Alltag nicht immer präsent. Die Überblähung der Lunge beim Emphysem beeinträchtigt die kardiale Funktion auch beim Herzgesunden. Die medikamentöse Verminderung der Überblähung verbessert so die kardiale Funktion. Biomarker helfen bei der Differenzialdiagnose. Ihre Rolle wird in der großen deutschen Kohorte COSYCONET untersucht. Der schwerergradig herzkranke Lungenpatient stellt therapeutisch eine große Herausforderung dar, insbesondere wenn er intensiv- und beatmungspflichtig wird und das Weaning prolongiert verläuft. Ein „klassisches“ Beispiel der Interaktion von Lunge und Herz stellen die Lungengefäßerkrankungen dar. Sowohl bei der pulmonal-arteriellen Hypertonie als auch der chronisch-thromboembolischen pulmonalen Hypertonie vergeht nicht selten eine zu lange Zeit bis zur Diagnosestellung. Die therapeutischen Möglichkeiten haben sich für beide Gruppen von Lungengefäßerkrankungen in den letzten Jahren erheblich verbessert und stellen eine wichtige Aufgabe für Pneumologen dar. Schlafbezogene Atmungsstörungen und die kardiale Funktion stehen in einer Wechselbeziehung, die nach der SERVE-HF-Studie einer besonderen Aufmerksamkeit bedarf. Unstrittig bleibt, dass die obstruktive Schlafapnoe ein unabhängiger Risikofaktor für kardiovaskuläre Erkrankungen ist und leitlinienkonform behandelt werden muss.

Der Workshop zeigte eindrucksvoll die vielfältigen Wechselwirkungen von Herz und respiratorischem System, die zu Problemen in Diagnostik und Therapie führen können. Pneumologische Leitlinien sollten den Aspekt der kardialen Komorbidität stärker in den Fokus nehmen.

Abstract

When caring for patients with respiratory diseases, always think of the heart! This is especially important for COPD patients, but also for a variety of other disorders of the respiratory system. At the workshop “Luftschlösser”, held once more at Wiesbaden, Germany in February 2019 the many and important interactions of the lungs and the heart as well as the therapeutic implications were discussed. Based on pathophysiology, the psycho-social consequences of dyspnea, the leading symptom in patients with lung and heart disease became apparent. A particularly demanding diagnostic and therapeutic situation occurs in patients suffering simultaneously of lung and heart disease. It has been shown how frequently the diagnosis myocardial infarction is missed in COPD patients – and vice versa. Surprisingly, this is also the case in asthmatics with coronary heart disease or heart failure, a fact not readily known in clinical practice. In patients with emphysema and no apparent heart disease, hyperinflation leads to significantly restricted heart function. Reducing hyperinflation by inhaling broncholytics thus improves heart function. Biomarkers are increasingly being used for diagnostic purposes. Their role is being investigated in the large German COPD cohort COSYCONET. Lung patients suffering from more severe heart diseases pose a challenge for therapy in intensive care, especially when ventilated, and weaning from the ventilator is prolonged. Lung vessel diseases are “classic” examples of the intimate interaction of the lungs and the heart. In pulmonary arterial hypertension as well as in chronic thrombo-embolic pulmonary hypertension the lag time between the first symptoms and the definite diagnosis is often unacceptably long. For both diseases of the lung vessels therapeutic options have improved significantly over the last years. Pulmonologists should take care of this increasingly important patient group. Sleep-related breathing disorders and heart function are closely intertwined. Both conditions need special attention after the results of the SERVE-HF trial have been published. But there is no doubt that obstructive sleep apnea represents an independent and important risk factor for cardiovascular disease and needs to be treated according to existing guidelines.

This workshop demonstrated impressively the multiple interactions of the respiratory system with cardiac function, resulting diagnostic and therapeutic problems, and means to overcome these problems. Guidelines for respiratory diseases should appropriately address cardiac comorbidity.

* Sponsor: Boehringer Ingelheim Pharma GmbH & Co KG


 
  • Literatur

  • 1 Rabe KF. Treating COPD – the TORCH trial, P values, and the Dodo. N Engl J Med 2007; 356: 851-854
  • 2 Morgan AD, Zakeri R, Quint JK. Defining the relationship between COPD and CVD: What are the implications for clinical practice?. Ther Adv Respir Dis 2018; 12: 1753465817750524
  • 3 Brekke PH, Omland T, Smith P. et al. Underdiagnosis of myocardial infarction in COPD – Cardiac Infarction Injury Score (CIIS) in patients hospitalised for COPD exacerbation. Respir Med 2008; 102: 1243-1247
  • 4 Roversi S, Fabbri LM, Sin DD. et al. Chronic Obstructive Pulmonary Disease and Cardiac Diseases. An Urgent Need for Integrated Care. Am J Respir Crit Care Med 2016; 194: 1319-1336
  • 5 Almagro P, López García F, Cabrera F. et al. Comorbidity and gender-related differences in patients hospitalized for COPD. The ECCO study. Respir Med 2010; 104: 253-259
  • 6 Canepa M, Straburzynska-Migaj E, Drozdz J. et al. Characteristics, treatments and 1-year prognosis of hospitalized and ambulatory heart failure patients with chronic obstructive pulmonary disease in the European Society of Cardiology Heart Failure Long-Term Registry. Eur J Heart Fail 2018; 20: 100-110
  • 7 Dayeh NR, Ledoux J, Dupuis J. Lung Capillary Stress Failure and Arteriolar Remodelling in Pulmonary Hypertension Associated with Left Heart Disease (Group 2 PH). Prog Cardiovasc Dis 2016; 59: 11-21
  • 8 Barr RG, Bluemke DA, Ahmed FS. et al. Percent emphysema, airflow obstruction, and impaired left ventricular filling. N Engl J Med 2010; 362: 217-227
  • 9 Watz H, Waschki B, Meyer T. et al. Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest 2010; 138: 32-38
  • 10 Xu Y, Yamashiro T, Moriya H. et al. Hyperinflated lungs compress the heart during expiration in COPD patients: A new finding on dynamic-ventilation computed tomography. Int J Chron Obstruct Pulmon Dis 2017; 12: 3123-3131
  • 11 Cosentino ER, Landolfo M, Bentivenga C. et al. Morbidity and mortality in a population of patients affected by heart failure and chronic obstructive pulmonary disease: An observational study. BMC Cardiovasc Disord 2019; 19: 20
  • 12 Stone IS, Barnes NC, James W-Y. et al. Lung Deflation and Cardiovascular Structure and Function in COPD: A Randomized Controlled Trial. Am J Respir Crit Care Med 2016; 193: 717-726
  • 13 Nishino T. Dyspnoea: Underlying mechanisms and treatment. Br J Anaesth 2011; 106: 463-474
  • 14 von Leupoldt A, Sommer T, Kegat S. et al. The unpleasantness of perceived dyspnea is processed in the anterior insula and amygdala. Am J Respir Crit Care Med 2008; 177: 1026-1032
  • 15 Parshall MB, Schwartzstein RM, Adams L. et al. An official American Thoracic Society statement: Update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med 2012; 185: 435-452
  • 16 Blinderman CD, Homel P, Billings JA. et al. Symptom distress and quality of life in patients with advanced congestive heart failure. J Pain Symptom Manage 2008; 35: 594-603
  • 17 Theander K, Hasselgren M, Luhr K. et al. Symptoms and impact of symptoms on function and health in patients with chronic obstructive pulmonary disease and chronic heart failure in primary health care. Int J Chron Obstruct Pulmon Dis 2014; 9: 785-794
  • 18 Angermann CE, Ertl G. Depression, Anxiety, and Cognitive Impairment: Comorbid Mental Health Disorders in Heart Failure. Curr Heart Fail Rep 2018; 15: 398-410
  • 19 Easton K, Coventry P, Lovell K. et al. Prevalence and Measurement of Anxiety in Samples of Patients With Heart Failure: Meta-analysis. J Cardiovasc Nurs 2016; 31: 367-379
  • 20 Konstam V, Moser DK, de Jong MJ. Depression and anxiety in heart failure. J Card Fail 2005; 11: 455-463
  • 21 Solano JP, Gomes B, Higginson IJ. A comparison of symptom prevalence in far advanced cancer, AIDS, heart disease, chronic obstructive pulmonary disease and renal disease. J Pain Symptom Manage 2006; 31: 58-69
  • 22 Wallenborn J, Angermann CE. Comorbid depression in heart failure. Herz 2013; 38: 587-596
  • 23 Ad Caroci S, Lareau SC. Descriptors of dyspnea by patients with chronic obstructive pulmonary disease versus congestive heart failure. Heart Lung 2004; 33: 102-110
  • 24 Fan VS, Giardino ND, Blough DK. et al. Costs of pulmonary rehabilitation and predictors of adherence in the National Emphysema Treatment Trial. COPD 2008; 5: 105-116
  • 25 Haugdahl HS, Storli SL, Meland B. et al. Underestimation of Patient Breathlessness by Nurses and Physicians during a Spontaneous Breathing Trial. Am J Respir Crit Care Med 2015; 192: 1440-1448
  • 26 Weiner B, Perry RP, Magnusson J. An attributional analysis of reactions to stigmas. J Pers Soc Psychol 1988; 55: 738-748
  • 27 Man WD-C, Chowdhury F, Taylor RS. et al. Building consensus for provision of breathlessness rehabilitation for patients with chronic obstructive pulmonary disease and chronic heart failure. Chron Respir Dis 2016; 13: 229-239
  • 28 Dreher M, Daher A, Keszei A. et al. Whole-Body Plethysmography and Blood Gas Analysis in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Respiration 2019; 97: 24-33
  • 29 Vanfleteren LE, Spruit MA, Groenen M. et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 187: 728-735
  • 30 Behar S, Panosh A, Reicher-Reiss H. et al. Prevalence and prognosis of chronic obstructive pulmonary disease among 5,839 consecutive patients with acute myocardial infarction. SPRINT Study Group. Am J Med 1992; 93: 637-641
  • 31 Hawkins NM, Huang Z, Pieper KS. et al. Chronic obstructive pulmonary disease is an independent predictor of death but not atherosclerotic events in patients with myocardial infarction: analysis of the Valsartan in Acute Myocardial Infarction Trial (VALIANT). Eur J Heart Fail 2009; 11: 292-298
  • 32 Mooe T, Stenfors N. The Prevalence of COPD in Individuals with Acute Coronary Syndrome: A Spirometry-Based Screening Study. COPD 2015; 12: 453-461
  • 33 Hadi HAR, Zubaid M, Al Mahmeed W. et al. Prevalence and prognosis of chronic obstructive pulmonary disease among 8167 Middle Eastern patients with acute coronary syndrome. Clin Cardiol 2010; 33: 228-235
  • 34 Daher A, Matthes M, Keszei A. et al. Characterization and Triggers of Dyspnea in Patients with Chronic Obstructive Pulmonary Disease or Chronic Heart Failure: Effects of Weather and Environment. Lung 2019; 197: 21-28
  • 35 Franssen FME, Soriano JB, Roche N. et al. Lung Function Abnormalities in Smokers with Ischemic Heart Disease. Am J Respir Crit Care Med 2016; 194: 568-576
  • 36 Rutten FH, Cramer M-JM, Grobbee DE. et al. Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur Heart J 2005; 26: 1887-1894
  • 37 Curkendall SM, DeLuise C, Jones JK. et al. Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Ann Epidemiol 2006; 16: 63-70
  • 38 Worth H, Buhl R, Criée C-P. et al. The ‘real-life’ COPD patient in Germany: The DACCORD study. Respir Med 2016; 111: 64-71
  • 39 Chang CL, Robinson SC, Mills GD. et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax 2011; 66: 764-768
  • 40 Dursunoglu N, Dursunoglu D, Yıldız Aİ. et al. Severity of coronary atherosclerosis in patients with COPD. Clin Respir J 2017; 11: 751-756
  • 41 Tanabe T, Rozycki HJ, Kanoh S. et al. Cardiac asthma: New insights into an old disease. Expert Rev Respir Med 2012; 6: 705-714
  • 42 Ahmad D, Patel M, Patel A. et al. Pulmonary Function Abnormalities in Non-Smokers with Congestive Heart Failure. In: A44. COPD: Phenotypes and comorbidities. American Thoracic Society; 2018: A1716-A1716
  • 43 Folmsbee SS, Gottardi CJ. Cardiomyocytes of the Heart and Pulmonary Veins: Novel Contributors to Asthma?. Am J Respir Cell Mol Biol 2017; 57: 512-518
  • 44 Nishimura Y, Yu Y, Kotani Y. et al. Bronchial hyperresponsiveness and exhaled nitric oxide in patients with cardiac disease. Respiration 2001; 68: 41-45
  • 45 Hunt SA, Abraham WT, Chin MH. et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 2009; 119: e391-e479
  • 46 Schreiber J. Asthma bronchiale: Fallstricke der Diagnostik. Dtsch Arztebl 2017; 114: 16
  • 47 Yeh J-J, Wei Y-F, Lin C-L. et al. Association of asthma-chronic obstructive pulmonary disease overlap syndrome with coronary artery disease, cardiac dysrhythmia and heart failure: A population-based retrospective cohort study. BMJ Open 2017; 7: e017657
  • 48 Iribarren C, Tolstykh IV, Miller MK. et al. Adult asthma and risk of coronary heart disease, cerebrovascular disease, and heart failure: A prospective study of 2 matched cohorts. Am J Epidemiol 2012; 176: 1014-1024
  • 49 Gayle AV, Axson EL, Bloom CI. et al. Changing causes of death for patients with chronic respiratory disease in England, 2005 – 2015. Thorax 2019; 74: 483-491
  • 50 Su X, Ren Y, Li M. et al. Prevalence of Comorbidities in Asthma and Nonasthma Patients: A Meta-analysis. Medicine (Baltimore) 2016; 95: e3459
  • 51 Scharf SM, Iqbal M, Keller C. et al. Hemodynamic characterization of patients with severe emphysema. Am J Respir Crit Care Med 2002; 166: 314-322
  • 52 Boussuges A, Pinet C, Molenat F. et al. Left atrial and ventricular filling in chronic obstructive pulmonary disease. An echocardiographic and Doppler study. Am J Respir Crit Care Med 2000; 162: 670-675
  • 53 Funk G-C, Lang I, Schenk P. et al. Left ventricular diastolic dysfunction in patients with COPD in the presence and absence of elevated pulmonary arterial pressure. Chest 2008; 133: 1354-1359
  • 54 Watz H, Waschki B, Meyer T. et al. Physical activity in patients with COPD. Eur Respir J 2009; 33: 262-272
  • 55 Butler J, Schrijen F, Henriquez A. et al. Cause of the raised wedge pressure on exercise in chronic obstructive pulmonary disease. Am Rev Respir Dis 1988; 138: 350-354
  • 56 Jörgensen K, Müller MF, Nel J. et al. Reduced intrathoracic blood volume and left and right ventricular dimensions in patients with severe emphysema: An MRI study. Chest 2007; 131: 1050-1057
  • 57 Grau M, Barr RG, Lima JA. et al. Percent emphysema and right ventricular structure and function: The Multi-Ethnic Study of Atherosclerosis-Lung and Multi-Ethnic Study of Atherosclerosis-Right Ventricle Studies. Chest 2013; 144: 136-144
  • 58 Smith BM, Prince MR, Hoffman EA. et al. Impaired left ventricular filling in COPD and emphysema: Is it the heart or the lungs? The Multi-Ethnic Study of Atherosclerosis COPD Study. Chest 2013; 144: 1143-1151
  • 59 Kawut SM, Poor HD, Parikh MA. et al. Cor pulmonale parvus in chronic obstructive pulmonary disease and emphysema: The MESA COPD study. J Am Coll Cardiol 2014; 64: 2000-2009
  • 60 Cuttica MJ, Colangelo LA, Shah SJ. et al. Loss of Lung Health from Young Adulthood and Cardiac Phenotypes in Middle Age. Am J Respir Crit Care Med 2015; 192: 76-85
  • 61 Criner GJ, Scharf SM, Falk JA. et al. Effect of lung volume reduction surgery on resting pulmonary hemodynamics in severe emphysema. Am J Respir Crit Care Med 2007; 176: 253-260
  • 62 Jörgensen K, Houltz E, Westfelt U. et al. Effects of lung volume reduction surgery on left ventricular diastolic filling and dimensions in patients with severe emphysema. Chest 2003; 124: 1863-1870
  • 63 Lammi MR, Ciccolella D, Marchetti N. et al. Increased oxygen pulse after lung volume reduction surgery is associated with reduced dynamic hyperinflation. Eur Respir J 2012; 40: 837-843
  • 64 Travers J, Laveneziana P, Webb KA. et al. Effect of tiotropium bromide on the cardiovascular response to exercise in COPD. Respir Med 2007; 101: 2017-2024
  • 65 Hohlfeld JM, Vogel-Claussen J, Biller H. et al. Effect of lung deflation with indacaterol plus glycopyrronium on ventricular filling in patients with hyperinflation and COPD (CLAIM): A double-blind, randomised, crossover, placebo-controlled, single-centre trial. Lancet Respir Med 2018; 6: 368-378
  • 66 Vogel-Claussen J, Schönfeld C-O, Kaireit TF. et al. Effect of Indacaterol/Glycopyrronium on Pulmonary Perfusion and Ventilation in Hyperinflated COPD Patients (CLAIM): A Double-Blind, Randomised, Crossover Trial. Am J Respir Crit Care Med 2019; 199: 1086-1096
  • 67 Watz H. On Trapped Air and Trapped Blood in COPD. Am J Respir Crit Care Med 2019; 199: 1047-1048
  • 68 Agustí A, Edwards LD, Rennard SI. et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 2012; 7: e37483
  • 69 Keller A, Fehlmann T, Ludwig N. et al. Genome-wide MicroRNA Expression Profiles in COPD: Early Predictors for Cancer Development. Genomics Proteomics Bioinformatics 2018; 16: 162-171
  • 70 Waschki B, Alter P, Zeller T. et al. Late Breaking Abstract – High-sensitivity troponin I predicts all-cause mortality in stable COPD in the COSYCONET cohort. In: Clinical Problems. European Respiratory Society; 2018: OA2138
  • 71 Karch A, Vogelmeier C, Welte T. et al. The German COPD cohort COSYCONET: Aims, methods and descriptive analysis of the study population at baseline. Respir Med 2016; 114: 27-37
  • 72 Kilic H, Kokturk N, Sari G. et al. Do females behave differently in COPD exacerbation?. Int J Chron Obstruct Pulmon Dis 2015; 10: 823-830
  • 73 Sundh J, Johansson G, Larsson K. et al. Comorbidity and health-related quality of life in patients with severe chronic obstructive pulmonary disease attending Swedish secondary care units. Int J Chron Obstruct Pulmon Dis 2015; 10: 173-183
  • 74 Fisher KA, Stefan MS, Darling C. et al. Impact of COPD on the mortality and treatment of patients hospitalized with acute decompensated heart failure: the Worcester Heart Failure Study. Chest 2015; 147: 637-645
  • 75 Ponikowski P, Voors AA, Anker SD. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129-2200
  • 76 Bundesärztekammer, Kassenärztliche Bundesvereinigung, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften. Nationale Versorgungsleitlinie Chronische Herzinsuffizienz – Kurzfassung. Im Internet: http://www.versorgungsleitlinien.de http://www.awmf.org
  • 77 Short PM, Lipworth SIW, Elder DHJ. et al. Effect of beta blockers in treatment of chronic obstructive pulmonary disease: a retrospective cohort study. BMJ 2011; 342: d2549
  • 78 Zachariah D, Stevens D, Sidorowicz G. et al. Quality of life improvement in older patients with heart failure initiated on ivabradine: Results from the UK multi-centre LIVE:LIFE prospective cohort study. Int J Cardiol 2017; 249: 313-318
  • 79 Liczek M, Panek I, Damiański P. et al. Neprilysin inhibitors as a new approach in the treatment of right heart failure in the course of chronic obstructive pulmonary disease. Response to the letter of Siniorakis et al. Adv Respir Med 2018; 86: 257-259
  • 80 Belardinelli R, Georgiou D, Cianci G. et al. 10-year exercise training in chronic heart failure: a randomized controlled trial. J Am Coll Cardiol 2012; 60: 1521-1528
  • 81 Alter P, Luetteken L, Nell C. et al. Exercise training leads to physiological left ventricular hypertrophy in COPD. Int J Cardiol 2014; 174: 156-157
  • 82 Bursi F, Vassallo R, Weston SA. et al. Chronic obstructive pulmonary disease after myocardial infarction in the community. Am Heart J 2010; 160: 95-101
  • 83 Lin W-C, Chen C-W, Lu C-L. et al. The association between recent hospitalized COPD exacerbations and adverse outcomes after percutaneous coronary intervention: A nationwide cohort study. Int J Chron Obstruct Pulmon Dis 2019; 14: 169-179
  • 84 Kirchhof P, Benussi S, Kotecha D. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016; 37: 2893-2962
  • 85 Grymonprez M, Vakaet V, Kavousi M. et al. Chronic obstructive pulmonary disease and the development of atrial fibrillation. Int J Cardiol 2019; 276: 118-124
  • 86 Holguin F, Folch E, Redd SC. et al. Comorbidity and mortality in COPD-related hospitalizations in the United States, 1979 to 2001. Chest 2005; 128: 2005-2011
  • 87 Funk G-C, Bauer P, Burghuber OC. et al. Prevalence and prognosis of COPD in critically ill patients between 1998 and 2008. Eur Respir J 2013; 41: 792-799
  • 88 Rothnie KJ, Connell O, Müllerová H. et al. Myocardial Infarction and Ischemic Stroke after Exacerbations of Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2018; 15: 935-946
  • 89 Portegies ML, Lahousse L, Joos GF. et al. Chronic Obstructive Pulmonary Disease and the Risk of Stroke. The Rotterdam Study. Am J Respir Crit Care Med 2016; 193: 251-258
  • 90 Pizarro C, Herweg-Steffens N, Buchenroth M. et al. Invasive coronary angiography in patients with acute exacerbated COPD and elevated plasma troponin. Int J Chron Obstruct Pulmon Dis 2016; 11: 2081-2089
  • 91 Kunisaki KM, Dransfield MT, Anderson JA. et al. Exacerbations of Chronic Obstructive Pulmonary Disease and Cardiac Events. A Post Hoc Cohort Analysis from the SUMMIT Randomized Clinical Trial. Am J Respir Crit Care Med 2018; 198: 51-57
  • 92 Wells JM, Morrison JB, Bhatt SP. et al. Pulmonary Artery Enlargement Is Associated With Cardiac Injury During Severe Exacerbations of COPD. Chest 2016; 149: 1197-1204
  • 93 Pervez MO, Winther JA, Brynildsen J. et al. Prognostic and diagnostic significance of mid-regional pro-atrial natriuretic peptide in acute exacerbation of chronic obstructive pulmonary disease and acute heart failure: Data from the ACE 2 Study. Biomarkers 2018; 23: 654-663
  • 94 Liu Y-J, Zhao J, Tang H. Non-invasive ventilation in acute respiratory failure: A meta-analysis. Clin Med (Lond) 2016; 16: 514-523
  • 95 Perren A, Brochard L. Managing the apparent and hidden difficulties of weaning from mechanical ventilation. Intensive Care Med 2013; 39: 1885-1895
  • 96 Mekontso Dessap A, Roche-Campo F, Kouatchet A. et al. Natriuretic peptide-driven fluid management during ventilator weaning: A randomized controlled trial. Am J Respir Crit Care Med 2012; 186: 1256-1263
  • 97 Bertrand P-M, Futier E, Coisel Y. et al. Neurally adjusted ventilatory assist vs pressure support ventilation for noninvasive ventilation during acute respiratory failure: A crossover physiologic study. Chest 2013; 143: 30-36
  • 98 Simonneau G, Montani D, Celermajer DS. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: pii: 1801913
  • 99 Humbert M, Guignabert C, Bonnet S. et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 2019; 53: pii: 1801887
  • 100 Strange G, Gabbay E, Kermeen F. et al. Time from symptoms to definitive diagnosis of idiopathic pulmonary arterial hypertension: The delay study. Pulm Circ 2013; 3: 89-94
  • 101 Pepke-Zaba J, Delcroix M, Lang I. et al. Chronic thromboembolic pulmonary hypertension (CTEPH): Results from an international prospective registry. Circulation 2011; 124: 1973-1981
  • 102 Hoeper MM, Ghofrani H-A, Grünig E. et al. Pulmonary Hypertension. Dtsch Arztebl Int 2017; 114: 73-84
  • 103 Ahmadi Z, Sandberg J, Shannon-Honson A. et al. Is chronic breathlessness less recognised and treated compared with chronic pain? A case-based randomised controlled trial. Eur Respir J 2018; 52: pii: 1800887
  • 104 Wilkens H, Held M. Herz oder Lunge? Diagnostik und Management der unklaren Belastungsdyspnoe. Herz 2018; 43: 567-582
  • 105 Humbert M, Yaici A, de Groote P. et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: Clinical characteristics at diagnosis and long-term survival. Arthritis Rheum 2011; 63: 3522-3530
  • 106 Bonderman D, Wexberg P, Martischnig AM. et al. A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J 2011; 37: 1096-1103
  • 107 Coghlan JG, Denton CP, Grünig E. et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: The DETECT study. Ann Rheum Dis 2014; 73: 1340-1349
  • 108 Frost A, Badesch D, Gibbs JSR. et al. Diagnosis of pulmonary hypertension. Eur Respir J 2019; 53: pii: 1801904
  • 109 Meijer FMM, Kies P, Jongbloed MRM. et al. ECG derived ventricular gradient exceeds echocardiography in the early detection of pulmonary hypertension in scleroderma patients. Int J Cardiol 2018; 273: 203-206
  • 110 Sawada H, Mitani Y, Nakayama T. et al. Detection of Pediatric Pulmonary Arterial Hypertension by School Electrocardiography Mass Screening. Am J Respir Crit Care Med 2019; 199: 1397-1406
  • 111 Kaddoura T, Vadlamudi K, Kumar S. et al. Acoustic diagnosis of pulmonary hypertension: Automated speech- recognition-inspired classification algorithm outperforms physicians. Sci Rep 2016; 6: 33182
  • 112 Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D. et al. Pulmonary Artery-Vein Classification in CT Images Using Deep Learning. IEEE Trans Med Imaging 2018; 37: 2428-2440
  • 113 Bergemann R, Allsopp J, Jenner H. et al. High levels of healthcare utilization prior to diagnosis in idiopathic pulmonary arterial hypertension support the feasibility of an early diagnosis algorithm: The SPHInX project. Pulm Circ 2018; 8: 2045894018798613
  • 114 Goyard C, Côté B, Looten V. et al. Determinants and prognostic implication of diagnostic delay in patients with a first episode of pulmonary embolism. Thromb Res 2018; 171: 190-198
  • 115 Couturaud F, Sanchez O, Pernod G. et al. Six Months vs Extended Oral Anticoagulation After a First Episode of Pulmonary Embolism: The PADIS-PE Randomized Clinical Trial. JAMA 2015; 314: 31-40
  • 116 Wilkens H, Held M. Lungenarterienembolie: Status 2018. Dtsch Arztebl Int 2018; 115 DOI: 10.3238/PersPneumo.2018.06.15.002.
  • 117 Held M, Grün M, Holl R. et al. Chronisch thromboembolische pulmonale Hypertonie: Latenz bis zur Diagnosesicherung und klinischer Zustand bei Diagnosestellung. Dtsch Med Wochenschr 2014; 139: 1647-1652
  • 118 Held M, Hesse A, Gött F. et al. A symptom-related monitoring program following pulmonary embolism for the early detection of CTEPH: A prospective observational registry study. BMC Pulm Med 2014; 14: 141
  • 119 Held M, Kolb P, Grün M. et al. Functional Characterization of Patients with Chronic Thromboembolic Disease. Respiration 2016; 91: 503-509
  • 120 Quadery SR, Swift AJ, Billings CG. et al. The impact of patient choice on survival in chronic thromboembolic pulmonary hypertension. Eur Respir J 2018; 52: pii: 1800589
  • 121 Brack T, Randerath W, Bloch KE. Cheyne-Stokes respiration in patients with heart failure: Prevalence, causes, consequences and treatments. Respiration 2012; 83: 165-176
  • 122 Kim Y, Koo YS, Lee HY. et al. Can Continuous Positive Airway Pressure Reduce the Risk of Stroke in Obstructive Sleep Apnea Patients? A Systematic Review and Meta-Analysis. PLoS ONE 2016; 11: e0146317
  • 123 Marin JM, Carrizo SJ, Vicente E. et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005; 365: 1046-1053
  • 124 McEvoy RD, Antic NA, Heeley E. et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N Engl J Med 2016; 375: 919-931
  • 125 Heinzer R, Vat S, Marques-Vidal P. et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir Med 2015; 3: 310-318
  • 126 Bailly S, Destors M, Grillet Y. et al. Obstructive Sleep Apnea: A Cluster Analysis at Time of Diagnosis. PLoS ONE 2016; 11: e0157318
  • 127 Randerath W, Verbraecken J, Andreas S. et al. Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. Eur Respir J 2017; 49: 1600959
  • 128 Berry RB, Budhiraja R, Gottlieb DJ. et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012; 8: 597-619
  • 129 Hanly P, Zuberi N, Gray R. Pathogenesis of Cheyne-Stokes respiration in patients with congestive heart failure. Relationship to arterial PCO2. Chest 1993; 104: 1079-1084
  • 130 Solin P, Bergin P, Richardson M. et al. Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation 1999; 99: 1574-1579
  • 131 Khayat R, Jarjoura D, Porter K. et al. Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. Eur Heart J 2015; 36: 1463-1469
  • 132 Watanabe E, Kiyono K, Matsui S. et al. Prognostic Importance of Novel Oxygen Desaturation Metrics in Patients With Heart Failure and Central Sleep Apnea. J Card Fail 2017; 23: 131-137
  • 133 Costanzo MR, Khayat R, Ponikowski P. et al. Mechanisms and clinical consequences of untreated central sleep apnea in heart failure. J Am Coll Cardiol 2015; 65: 72-84
  • 134 Sands SA, Edwards BA, Kee K. et al. Loop gain as a means to predict a positive airway pressure suppression of Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 2011; 184: 1067-1075
  • 135 Sharma BK, Bakker JP, McSharry DG. et al. Adaptive servoventilation for treatment of sleep-disordered breathing in heart failure: A systematic review and meta-analysis. Chest 2012; 142: 1211-1221
  • 136 Cowie MR, Woehrle H, Wegscheider K. et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N Engl J Med 2015; 373: 1095-1105
  • 137 Oldenburg O, Bitter T, Lehmann R. et al. Adaptive servoventilation improves cardiac function and respiratory stability. Clin Res Cardiol 2011; 100: 107-115