Planta Med 2019; 85(11/12): 825-839
DOI: 10.1055/a-0897-7492
Biological and Pharmacological Activity
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Modulation of Diabetes by Natural Products and Medicinal Plants via Incretins

José-Luis Ríos
1   Departament de Farmacologia, Universitat de València, Valencia, Spain
,
Isabel Andújar
1   Departament de Farmacologia, Universitat de València, Valencia, Spain
2   Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, Valencia, Spain
,
Guillermo R. Schinella
3   Cátedra Farmacología Básica, Facultad de Ciencias Médicas UNLP and CICPBA, La Plata, Argentina
,
Flavio Francini
4   CENEXA; UNLP-CONICET La Plata-FCM; CEAS-CICPBA, La Plata, Argentina
› Author Affiliations
Further Information

Publication History

received 05 February 2019
revised 17 April 2019

accepted 22 April 2019

Publication Date:
07 May 2019 (online)

Abstract

Incretins are metabolic hormones released after a meal that increase insulin secretion from pancreatic β-cells. The two main incretins are the intestinal peptides glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Both induce a decrease in glycemia, slow down the absorption of nutrients, and are inactivated by the enzyme dipeptidyl peptidase-4. Recently, incretin-based therapies have become a useful tool to treat diabetic patients, and different studies have focused on the identification of glucagon-like peptide-1 receptor agonists, including those of natural origin. This review focuses on the new findings of medicinal plants and natural products as possible active agents on the potentiation of incretin receptor signaling. Among these, soluble fiber from species of Plantago and guar gum show promising effects, iridoid derivatives are relevant activators of incretin receptors, and derivatives of cyanidin, especially diglycosylated ones, are an interesting source of dipeptidyl peptidase-4 inhibitors.

 
  • References

  • 1 Holst JJ. Glucagon-like Peptide 1 (GLP-1): An Intestinal Hormone, Signalling Nutritional Abundance, with an Unusual Therapeutic Potential. Trends Endocrinol Metab 1999; 10: 229-235
  • 2 Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117: 24-32
  • 3 Deacon CF, Ahrén B. Physiology of incretins in health and disease. Rev Diabet Stud 2011; 8: 293-306
  • 4 Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease. Diabetes Obes Metab 2018; 20 (Suppl. 01) 5-21
  • 5 Sun EWL, Martin AM, Young RL, Keating DJ. The regulation of peripheral metabolism by gut-derived hormones. Front Endocrinol 2019; 9: 754
  • 6 Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368: 1696-1705
  • 7 Sun L, Wang C, Dai Y, Chu Y, Han J, Zhou J, Cai X, Huang W, Qian H. Coumaglutide, a novel long-acting GLP-1 analog, inhibits β-cell apoptosis in vitro and invokes sustained glycemic control in vivo . Eur J Pharmacol 2015; 7767: 211-219
  • 8 Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: current advancements and challenges. Biomed Pharmacother 2018; 108: 952-962
  • 9 Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29: 46-52
  • 10 Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function?. Diabetes 2010; 59: 1117-1125
  • 11 Holst JJ, Knop FK, Vilsbøll T, Krarup T, Madsbad S. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 2011; 34 (Suppl. 02) S251-S257
  • 12 Turton MD, OʼShea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 69-72
  • 13 Schirra J, Nicolaus M, Roggel R, Katschinski M, Storr M, Woerle HJ, Göke B. Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 2006; 55: 243-251
  • 14 Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-2157
  • 15 Wang Z, Wang RM, Owji AA, Smith DM, Ghatei MA, Bloom SR. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest 1995; 95: 417-421
  • 16 Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3: 153-165
  • 17 Ritzel R, Orskov C, Holst JJ, Nauck MA. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7–36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships. Diabetologia 1995; 38: 720-725
  • 18 Holst JJ, Christensen M, Lund A, de Heer J, Svendsen B, Kielgast U, Knop FK. Regulation of glucagon secretion by incretins. Diabetes Obes Metab 2011; 13 (Suppl. 01) 89-94
  • 19 Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker DJ, Wollheim C, Burcelin R, Thorens B. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004; 113: 635-645
  • 20 Burcelin R, Da Costa A, Drucker D, Thorens B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes 2001; 50: 1720-1728
  • 21 Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, Anania FA. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010; 51: 1584-1592
  • 22 Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D, Garelli P, Casini A, Manco M, Mingrone G, Risaliti A, Frega GN, Benedetti A, Gastaldelli A. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 2011; 31: 1285-1297
  • 23 Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006; 43: 173-181
  • 24 Mells JE, Fu PP, Sharma S, Olson D, Cheng L, Handy JA, Saxena NK, Sorescu D, Anania FA. GLP-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6 J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol 2012; 302: G225-G235
  • 25 Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, Barzilai N, Oren R, Fishman S. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 2011; 54: 1214-1223
  • 26 Tomas E, Stanojevic V, Habener JF. GLP-1 (9–36) amide metabolite suppression of glucose production in isolated mouse hepatocytes. Horm Metab Res 2010; 42: 657-662
  • 27 Tomas E, Stanojevic V, Habener JF. GLP-1-derived nonapeptide GLP-1(28–36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul Pept 2011; 167: 177-184
  • 28 Tomas E, Wood JA, Stanojevic V, Habener JF. Glucagon-like peptide-1(9–36)amide metabolite inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Diabetes Obes Metab 2011; 13: 26-33
  • 29 Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care 2011; 34: 697-702
  • 30 Oeseburg H, de Boer RA, Buikema H, van der Harst P, van Gilst WH, Silljé HH. Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol 2010; 30: 1407-1414
  • 31 Holst JJ, Deacon CF. Glucagon-like peptide 1 and inhibitors of dipeptidyl peptidase IV in the treatment of type 2 diabetes mellitus. Curr Opin Pharmacol 2004; 4: 589-596
  • 32 Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down?. Diabetologia 2011; 54: 10-18
  • 33 Meneses MJ, Silva BM, Sousa M, Sá R, Oliveira PF, Alves MG. Antidiabetic drugs: mechanisms of action and potential outcomes on cellular metabolism. Curr Pharm Des 2015; 21: 3606-3620
  • 34 Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med 2015; 81: 975-994
  • 35 Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015; 38: 140-149
  • 36 Irons BK, Minze MG. Drug treatment of type 2 diabetes mellitus in patients for whom metformin is contraindicated. Diabetes Metab Syndr Obes 2014; 7: 15-24
  • 37 Guja C, Frías JP, Somogyi A, Jabbour S, Wang H, Hardy E, Rosenstock J. Effect of exenatide QW or placebo, both added to titrated insulin glargine, in uncontrolled type 2 diabetes: The DURATION-7 randomized study. Diabetes Obes Metab 2018; 20: 1602-1614
  • 38 Henry RR, Rosenstock J, Denham DS, Prabhakar P, Kjems L, Baron MA. Clinical impact of ITCA 650, a novel drug-device GLP-1 receptor agonist, in uncontrolled type 2 diabetes and very high baseline HbA1c: The FREEDOM-1 HBL (High Baseline) study. Diabetes Care 2018; 41: 613-619
  • 39 Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Pept 2004; 117: 77-88
  • 40 Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007; 298: 194-206
  • 41 Kang YM, Cho YK, Lee J, Lee SE, Lee WJ, Park JY, Kim YJ, Jung CH, Nauck MA. Asian subpopulations may exhibit greater cardiovascular benefit from long-acting glucagon-like peptide 1 receptor agonists: A meta-analysis of cardiovascular outcome trials. Diabetes Metab J 2018; 42: e51
  • 42 Andrikou E, Tsioufis C, Andrikou I, Leontsinis I, Tousoulis D, Papanas N. GLP-1 receptor agonists and cardiovascular outcome trials: An update. Hellenic J Cardiol 2018; DOI: 10.1016/j.hjc.2018.11.008.
  • 43 Grouzmann E, Monod M, Landis BN, Lacroix JS. Adverse effects of incretin therapy for type 2 diabetes. JAMA 2007; 298: 1759-1760
  • 44 Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud 2014; 11: 202-230
  • 45 Wang T, Wang F, Zhou J, Tang H, Giovenale S. Adverse effects of incretin-based therapies on major cardiovascular and arrhythmia events: meta-analysis of randomized trials. Diabetes Metab Res Rev 2016; 32: 843-857
  • 46 Willard FS, Bueno AB, Sloop KW. Small molecule drug discovery at the glucagon-like peptide-1 receptor. Exp Diabetes Res 2012; 2012: 709893
  • 47 Thompson A, Stephens JW, Bain SC, Kanamarlapudi V. Molecular characterisation of small molecule agonists effect on the human glucagon like peptide-1 receptor internalisation. PLoS One 2016; 11: e0154229
  • 48 Thomsen C, Rasmussen O, Lousen T, Holst JJ, Fenselau S, Schrezenmeir J, Hermansen K. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 1999; 69: 1135-1143
  • 49 Thomsen C, Storm H, Holst JJ, Hermansen K. Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am J Clin Nutr 2003; 77: 605-611
  • 50 Iritani N, Sugimoto T, Fukuda H, Komiya M, Ikeda H. Oral triacylglycerols regulate plasma glucagon-like peptide-1(7–36) and insulin levels in normal and especially in obese rats. J Nutr 1999; 129: 46-50
  • 51 Prieto PG, Cancelas J, Villanueva-Peñacarrillo ML, Valverde I, Malaisse WJ. Effects of an olive oil-enriched diet on plasma GLP-1 concentration and intestinal content, plasma insulin concentration, and glucose tolerance in normal rats. Endocrine 2005; 26: 107-115
  • 52 Cancelas J, Prieto PG, Villanueva-Peñacarrillo ML, Valverde I, Malaisse WJ. Effects of an olive oil-enriched diet on glucagon-like peptide 1 release and intestinal content, plasma insulin concentration, glucose tolerance and pancreatic insulin content in an animal model of type 2 diabetes. Horm Metab Res 2006; 38: 98-105
  • 53 DʼAlessio D, Lu W, Sun W, Zheng S, Yang Q, Seeley R, Woods SC, Tso P. Fasting and postprandial concentrations of glucagon-like peptide 1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 into the lymph system. Am J Physiol Regul Integr Comp Physiol 2007; 293: R2163-R2169
  • 54 Lu WJ, Yang Q, Sun W, Woods SC, DʼAlessio D, Tso P. The regulation of the lymphatic secretion of glucagon-like peptide-1 (GLP-1) by intestinal absorption of fat and carbohydrate. Am J Physiol Gastrointest Liver Physiol 2007; 293: G963-G971
  • 55 Yoder SM, Yang Q, Kindel TL, Tso P. Stimulation of incretin secretion by dietary lipid: is it dose dependent?. Am J Physiol Gastrointest Liver Physiol 2009; 297: G299-G305
  • 56 Cheshmehkani A, Senatorov IS, Kandi P, Singh M, Britt A, Hayslett R, Moniri NH. Fish oil and flax seed oil supplemented diets increase FFAR4 expression in the rat colon. Inflamm Res 2015; 64: 809-815
  • 57 Lindgren O, Carr RD, Deacon CF, Holst JJ, Pacini G, Mari A, Ahrén B. Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab 2011; 96: 2519-2524
  • 58 Manning PJ, Sutherland WH, Manning AE, de Jong SA, Berry EA. Ingestion of thermally oxidized sunflower oil decreases postprandial lipemia mainly in younger individuals. Nutr Res 2013; 33: 711-718
  • 59 Ul Kabir A, Samad MB, Ahmed A, Jahan MR, Akhter F, Tasnim J, Hasan SM, Sayfe SS, Hannan JM. Aqueous fraction of Beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters. PLoS One 2015; 10: e0116546
  • 60 Ellis PR, Roberts FG, Low AG, Morgan LM. The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: relationship to rheological changes in jejunal digesta. Br J Nutr 1995; 74: 539-556
  • 61 Gatenby SJ, Ellis PR, Morgan LM, Judd PA. Effect of partially depolymerized guar gum on acute metabolic variables in patients with non-insulin-dependent diabetes. Diabet Med 1996; 13: 358-364
  • 62 den Besten G, Gerding A, van Dijk TH, Ciapaite J, Bleeker A, van Eunen K, Havinga R, Groen AK, Reijngoud DJ, Bakker BM. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PLoS One 2015; 10: e0136364
  • 63 Karhunen LJ, Juvonen KR, Flander SM, Liukkonen KH, Lähteenmäki L, Siloaho M, Laaksonen DE, Herzig KH, Uusitupa MI, Poutanen KS. A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults. J Nutr 2010; 140: 737-744
  • 64 Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 2003; 78: 728-733
  • 65 McCarty MF. A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses 2005; 64: 848-853
  • 66 Esatbeyoglu T, Rodríguez-Werner M, Schlösser A, Liehr M, Ipharraguerre I, Winterhalter P, Rimbach G. Fractionation of plant bioactives from black carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by adsorptive membrane chromatography and analysis of their potential anti-diabetic activity. J Agric Food Chem 2016; 64: 5901-5908
  • 67 Nagamine R, Ueno S, Tsubata M, Yamaguchi K, Takagaki K, Hira T, Hara H, Tsuda T. Dietary sweet potato (Ipomoea batatas L.) leaf extract attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1). Food Funct 2014; 5: 2309-2316
  • 68 Hung HY, Qian K, Morris-Natschke SL, Hsu CS, Lee KH. Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep 2012; 29: 580-606
  • 69 Eddouks M, Bidi A, El Bouhali B, Hajji L, Zeggwagh NA. Antidiabetic plants improving insulin sensitivity. J Pharm Pharmacol 2014; 66: 1197-1214
  • 70 Ribnicky DM, Poulev A, Watford M, Cefalu WT, Raskin I. Antihyperglycemic activity of Tarralin, an ethanolic extract of Artemisia dracunculus L. Phytomedicine 2006; 13: 550-557
  • 71 Park S, Hong SM, Ahn IS, Kim YJ, Lee JB. Huang-Lian-Jie-Du-Tang supplemented with Schisandra chinensis Baill. and Polygonatum odoratum Druce improved glucose tolerance by potentiating insulinotropic actions in islets in 90 % pancreatectomized diabetic rats. Biosci Biotechnol Biochem 2009; 73: 2384-2392
  • 72 Hussein GM, Matsuda H, Nakamura S, Hamao M, Akiyama T, Tamura K, Yoshikawa M. Mate tea (Ilex paraguariensis) promotes satiety and body weight lowering in mice: involvement of glucagon-like peptide-1. Biol Pharm Bull 2011; 34: 1849-1855
  • 73 Kubow S, Hobson L, Iskandar MM, Sabally K, Donnelly DJ, Agellon LB. Extract of Irish potatoes (Solanum tuberosum L.) decreases body weight gain and adiposity and improves glucose control in the mouse model of diet-induced obesity. Mol Nutr Food Res 2014; 58: 2235-2238
  • 74 Raasmaja A, Lecklin A, Li XM, Zou J, Zhu GG, Laakso I, Hiltunen R. A water-alcohol extract of Citrus grandis whole fruits has beneficial metabolic effects in the obese Zucker rats fed with high fat/high cholesterol diet. Food Chem 2013; 138: 1392-1399
  • 75 Bhat GA, Khan HA, Alhomida AS, Sharma P, Singh R, Paray BA. GLP-I secretion in healthy and diabetic Wistar rats in response to aqueous extract of Momordica charantia . BMC Complement Altern Med 2018; 18: 162 Erratum in: BMC Complement Altern Med 2018; 18: 175 and BMC Complement Altern Med 2018; 18: 182 Erratum in: BMC Complement Altern Med 2018; 18: 175 and BMC Complement Altern Med 2018; 18: 182
  • 76 Kosaraju J, Dubala A, Chinni S, Khatwal RB, Satish Kumar MN, Basavan D. A molecular connection of Pterocarpus marsupium, Eugenia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm Biol 2014; 52: 268-271
  • 77 Kosaraju J, Madhunapantula SV, Chinni S, Khatwal RB, Dubala A, Muthureddy Nataraj SK, Basavan D. Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimerʼs disease. Behav Brain Res 2014; 267: 55-65
  • 78 Wang F, Yu G, Zhang Y, Zhang B, Fan J. Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum vulgare trifurcatum (L.) Trofim) proteins. J Agric Food Chem 2015; 63: 9543-9549
  • 79 Saleem S, Jafri L, ul Haq I, Chang LC, Calderwood D, Green BD, Mirza B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol 2014; 156: 26-32
  • 80 González-Abuín N, Martínez-Micaelo N, Blay M, Ardévol A, Pinent M. Grape-seed procyanidins prevent the cafeteria-diet-induced decrease of glucagon-like peptide-1 production. J Agric Food Chem 2014; 62: 1066-1072
  • 81 González-Abuín N, Martínez-Micaelo N, Margalef M, Blay M, Arola-Arnal A, Muguerza B, Ardévol A, Pinent M. A grape seed extract increases active glucagon-like peptide-1 levels after an oral glucose load in rats. Food Funct 2014; 5: 2357-2364
  • 82 Sulaiman AA. Effect of single oral dose of proanthocyanidin on postprandial hyperglycemia in healthy rats: A comparative study with sitagliptin. J Intercult Ethnopharmacol 2014; 3: 73-77
  • 83 Kozuka M, Yamane T, Nakano Y, Nakagaki T, Ohkubo I, Ariga H. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice. Biochem Biophys Res Commun 2015; 465: 433-436
  • 84 Jafri L, Saleem S, Calderwood D, Gillespie A, Mirza B, Green BD. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion. Peptides 2016; 78: 51-58
  • 85 Tsoukalas M, Muller CD, Lobstein A, Urbain A. Pregnane glycosides from Cynanchum marnierianum stimulate GLP-1 secretion in STC-1 cells. Planta Med 2016; 82: 992-999
  • 86 Tsoukalas M, Psichas A, Reimann F, Gribble FM, Lobstein A, Urbain A. Pregnane glycosides from Cynanchum menarandrense . Steroids 2017; 125: 27-32
  • 87 Kim K, Lee YM, Rhyu MR, Kim HY. Spergularia marina induces glucagon-like peptide-1 secretion in NCI-H716 cells through bile acid receptor activation. J Med Food 2014; 17: 1197-1203
  • 88 Suh HW, Lee KB, Kim KS, Yang HJ, Choi EK, Shin MH, Park YS, Na YC, Ahn KS, Jang YP, Um JY, Jang HJ. A bitter herbal medicine Gentiana scabra root extract stimulates glucagon-like peptide-1 secretion and regulates blood glucose in db/db mouse. J Ethnopharmacol 2015; 172: 219-226
  • 89 González-Abuín N, Martínez-Micaelo N, Blay M, Green BD, Pinent M, Ardévol A. Grape-seed procyanidins modulate cellular membrane potential and nutrient-induced GLP-1 secretion in STC-1 cells. Am J Physiol Cell Physiol 2014; 306: C485-C492
  • 90 Casanova-Martí À, Serrano J, Portune KJ, Sanz Y, Blay MT, Terra X, Ardévol A, Pinent M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct 2018; 9: 1672-1682
  • 91 Tani T, Nishikawa S, Kato M, Tsuda T. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Sci Nutr 2017; 5: 929-933
  • 92 Qiu J, Zhu H, Liu P, Wang J, Lu L. Protective effects of dietary polyphenols from black soybean seed coats on islet and renal function in streptozotocin-induced diabetic rats. J Sci Food Agric 2018; 98: 2350-2359
  • 93 Tunnicliffe JM, Eller LK, Reimer RA, Hittel DS, Shearer J. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Appl Physiol Nutr Metab 2011; 36: 650-659
  • 94 Perfumi M, Arnold N, Tacconi R. Hypoglycemic activity of Salvia fruticosa Mill. from Cyprus. J Ethnopharmacol 1991; 34: 135-140
  • 95 Azevedo MF, Lima CF, Fernandes-Ferreira M, Almeida MJ, Wilson JM, Pereira-Wilson C. Rosmarinic acid, major phenolic constituent of Greek sage herbal tea, modulates rat intestinal SGLT1 levels with effects on blood glucose. Mol Nutr Food Res 2011; 55 (Suppl. 01) S15-S25
  • 96 Zhang Q, Xiao X, Li M, Li W, Yu M, Zhang H, Ping F, Wang Z, Zheng J. Berberine moderates glucose metabolism through the GnRH-GLP-1 and MAPK pathways in the intestine. BMC Complement Altern Med 2014; 14: 188
  • 97 Yang L, Yao D, Yang H, Wei Y, Peng Y, Ding Y, Shu L. Puerarin protects pancreatic β-cells in obese diabetic mice via activation of GLP-1R signaling. Mol Endocrinol 2016; 30: 361-371
  • 98 Guo LX, Xia ZN, Gao X, Yin F, Liu JH. Glucagon-like peptide 1 receptor plays a critical role in geniposide-regulated insulin secretion in INS-1 cells. Acta Pharmacol Sin 2012; 33: 237-241
  • 99 Fan H, Li TF, Gong N, Wang YX. Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression. Neuropharmacology 2016; 101: 98-109
  • 100 Go HK, Rahman MM, Kim GB, Na CS, Song CH, Kim JS, Kim SJ, Kang HS. Antidiabetic effects of yam (Dioscorea batatas) and its active constituent, allantoin, in a rat model of streptozotocin-Induced diabetes. Nutrients 2015; 70: 8532-8544
  • 101 Hu ML, Rayner CK, Wu KL, Chuah SK, Tai WC, Chou YP, Chiu YC, Chiu KW, Hu TH. Effect of ginger on gastric motility and symptoms of functional dyspepsia. World J Gastroenterol 2011; 17: 105-110
  • 102 Samad MB, Mohsin MNAB, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, Muna IA, Akhter F, Kabir AU, Hannan JMA. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement Altern Med 2017; 17: 395
  • 103 Andersson U, Berger K, Högberg A, Landin-Olsson M, Holm C. Effects of rose hip intake on risk markers of type 2 diabetes and cardiovascular disease: a randomized, double-blind, cross-over investigation in obese persons. Eur J Clin Nutr 2012; 66: 585-590
  • 104 Vallianou NG, Evangelopoulos A, Kazazis C. Resveratrol and diabetes. Rev Diabet Stud 2013; 10: 236-242
  • 105 Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J, Mikolás E, Szijártó IA, Mérei A, Halmai R, Mészáros LG, Sümegi B, Wittmann I. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 2011; 106: 383-389
  • 106 Törrönen R, Sarkkinen E, Niskanen T, Tapola N, Kilpi K, Niskanen L. Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Br J Nutr 2012; 107: 1445-1451
  • 107 Liu CY, Huang CJ, Huang LH, Chen IJ, Chiu JP, Hsu CH. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One 2014; 9: e91163
  • 108 Castro-Acosta ML, Stone SG, Mok JE, Mhajan RK, Fu CI, Lenihan-Geels GN, Corpe CP, Hall WL. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J Nutr Biochem 2017; 49: 53-62
  • 109 Boix-Castejón M, Herranz-López M, Pérez Gago A, Olivares-Vicente M, Caturla N, Roche E, Micol V. Hibiscus and lemon verbena polyphenols modulate appetite-related biomarkers in overweight subjects: a randomized controlled trial. Food Funct 2018; 9: 3173-3184 Erratum in: Food Funct 2018; 9: 4037 Erratum in: Food Funct 2018; 9: 4037
  • 110 Zanzer YC, Plaza M, Dougkas A, Turner C, Östman E. Black pepper-based beverage induced appetite-suppressing effects without altering postprandial glycaemia, gut and thyroid hormones or gastrointestinal well-being: a randomized crossover study in healthy subjects. Food Funct 2018; 9: 2774-2786