Rofo 2019; 191(12): 1083-1090
DOI: 10.1055/a-0896-2833
Review
© Georg Thieme Verlag KG Stuttgart · New York

Imaging in Large Vessel Vasculitides

Bildgebende Diagnostik der Großgefäßvaskulitiden
Konstanze Guggenberger
Department of Diagnostic and Interventional Radiology, University-Hospital Würzburg, Germany
,
Thorsten Bley
Department of Diagnostic and Interventional Radiology, University-Hospital Würzburg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

15. November 2018

02. April 2019

Publikationsdatum:
16. Mai 2019 (online)

Abstract

Background Large vessel vasculitides comprise primary vasculitides of large and medium-sized arteries with various clinical, laboratory and radiological presentations. Imaging has become increasingly important in the diagnosis and monitoring of large vessel vasculitides. It complements clinical and laboratory examination and displays vasculitic changes of large extra- and intracranial arteries with relatively good diagnostic reliability and a low level of invasiveness.

Method This review presents the most important imaging modalities and some typical imaging findings in the context of the two main forms of large vessel vasculitis, giant cell arteritis and Takayasu’s arteritis, with special regard to the recently launched EULAR (The European League Against Rheumatism) recommendations on the role of imaging in patients with suspected large vessel vasculitides.

Results and Conclusion Color-coded duplex sonography (CCDS), magnetic resonance imaging (MRI), computed tomography (CT), and 18F-fluorodeoxyglucose positron emission tomography are today’s common imaging methods in large vessel vasculitides representing a reasonable and less invasive alternative or at least a good complement to temporal artery biopsy. Today’s EULAR guidelines recommend an imaging test as the first complementary method to clinical examination with CCDS as the preferred diagnostic test in suspected giant cell arteritis, MRI as the equivalent alternative in the case of inconclusive results, and MRI as the first choice in suspected Takayasu’s arteritis.

Key Points:

  • Imaging is a noninvasive diagnostic test for diagnosing and monitoring large vessel vasculitides and is recommended nowadays as the first complementary method to clinical examination.

  • Imaging is a reasonable alternative or at least a good complement to temporal artery biopsy in the case of suspected giant cell arteritis.

  • Today’s EULAR guidelines recommend CCDS as the preferred diagnostic test in suspected giant cell arteritis, with MRI as an equivalent alternative in the case of inconclusive results, and MRI as the first choice in suspected Takayasu’s arteritis.

Citation Format

  • Guggenberger K, Bley T. Imaging in Large Vessel Vasculitides. Fortschr Röntgenstr 2019; 191: 1083 – 1090

Zusammenfassung

Hintergrund Unter dem Begriff Großgefäßvaskulitiden wird eine Gruppe primärer Vaskulitiden zusammengefasst, welche sich durch eine autoimmunologisch bedingte granulomatöse Entzündung mittelgroßer und großer Blutgefäße kennzeichnet und ein sehr variables klinisches, laborchemisches und radiologisches Erscheinungsbild aufweist. In den vergangenen Jahren haben bildgebende Verfahren zur Diagnostik und zum Monitoring von Großgefäßvaskulitiden an Bedeutung gewonnen. Mittels verschiedener bildgebender Verfahren lassen sich pathognomonische Veränderungen im Rahmen von Großgefäßvaskulitiden mit relativ hoher Sensitivität und mit relativ geringer Invasivität visualisieren.

Methode Diese Übersichtsarbeit stellt die wichtigsten bildgebenden Verfahren und einige typische Bildbefunde der beiden Hauptformen der Großgefäßvaskulitis – der Riesenzellarteriitis und der Takayasu-Arteriitis – vor, unter spezieller Berücksichtigung der jüngst veröffentlichten EULAR (The European League Against Rheumatism)-Empfehlungen über die Rolle der Bildgebung bei Patienten mit suspizierten Großgefäßvaskulitiden.

Ergebnisse und Schlussfolgerung Die farbkodierte Duplexsonografie, die Magnetresonanztomografie, die Computertomografie, die Positronenemissionstomografie und die diagnostische Subtraktionsangiografie sind die heutzutage gängigen bildgebenden Verfahren, die zur Diagnostik und zum Monitoring von Großgefäßvaskulitiden zum Einsatz kommen und eine sinnvolle, nicht- bzw. geringinvasive Alternative oder zumindest Zusatzdiagnostik zum bisherigen Goldstandard, der Temporalarterienbiospie, darstellen. Die jüngsten EULAR-Leitlinien empfehlen die farbkodierte Duplexsonografie als Diagnostikum der ersten Wahl im Falle einer suspizierten Riesenzellarteriitis mit der Magnetresonanztomografie als gleichwertige Alternative im Falle uneindeutiger Befunde in der Sonografie und die Magnetresonanztomografie als bildgebendes Verfahren der ersten Wahl zur Detektion einer Takayasu-Arteriitis.

Kernaussagen:

  • Die Bildgebung wird für die Diagnostik von Großgefäßvaskulitiden als erste, präferierte Ergänzung zur klinischen und laborchemischen Untersuchung empfohlen.

  • Radiologische Verfahren sind für die Diagnostik einer Riesenzellarteriitis eine sinnvolle, nicht- bzw. geringinvasive Alternative/Ergänzung zur Temporalarterienbiospie.

  • Die jüngsten EULAR-Leitlinien empfehlen die farbkodierte Duplexsonografie als Diagnostikum der ersten Wahl im Falle einer suspizierten Riesenzellarteriitis mit der Magnetresonanztomografie als gleichwertige Alternative im Falle uneindeutiger Befunde in der Sonografie und die Magnetresonanztomografie als präferierte bildgebende Modalität zur Detektion einer Takayasu-Arteriitis.

 
  • References

  • 1 Tracy A, Cardy CM, Carruthers D. Large vessel vasculitides. Medicine 2018; 46: 112-117
  • 2 Jennette JC, Falk RJ, Bacon PA. et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013; 65: 1-11
  • 3 Versari A, Pipitone N, Casali M. et al. Use of imaging techniques in large vessel vasculitis and related conditions. Q J Nucl Med Mol Imaging 2018; 62: 34-39
  • 4 Bley TA, Weiben O, Uhl M. et al. Assessment of the cranial involvement pattern of giant cell arteritis with 3T magnetic resonance imaging. Arthritis Rheum 2005; 52: 2470-2477
  • 5 Wilkinson IM, Russell RW. Arteries of the head and neck in giant cell arteritis: a pathological study to show the pattern of arterial involvement. Arch Neurol 1972; 27: 378-391
  • 6 Klein RG, Campbell RJ, Hunder GG. et al. Skip lesions in temporal arteritis. Mayo Clin Proc 1976; 51: 504-510
  • 7 Chung JW, Kim HC, Kim SJ. et al. Patterns of aortic involvement in Takayasu arteritis and its clinical implications: evaluation with spiral computed tomography angiography. J Vasc Surg 2007; 45: 906-914
  • 8 Siemonsen S, Brekenfeld C, Holst B. et al. 3T MRI reveals extra- and intracranial involvement in giant cell arteritis. Am J Neuroradiol 2015; 36: 91-97
  • 9 Wilkinson IM, Russell RW. Arteries of the head and neck in giant cell arteritis: a pathological study to show the pattern of arterial involvement. Arch Neurol 1972; 27: 378-391
  • 10 Salvarani C, Giannini C, Miller DV. et al. Giant cell arteritis: involvement of intracranial arteries. Arthritis Rheum 2006; 55: 985-989
  • 11 Salvarani C, Cimino L, Macchioni P. et al. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. Arthritis Rheum 2005; 53: 293-297
  • 12 Salvarani C, Pipitone N, Versari A. et al. Clinical features of polymyalgia rheumatica and giant cell arteritis. Nat Rev Rheumatol 2012; 8: 509-521
  • 13 Direskeneli H. Clinical assessment in Takayasu’s arteritis: major challenges and controversies. Clin Exp Rheumatol 2017; 35: 189-193
  • 14 Hunder GG, Bloch DA, Michel BA. et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122-1128
  • 15 Arend WP, Michel BA, Bloch DA. et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 1990; 33: 1129-1134
  • 16 Hall S, Persellin S, Lie JT. et al. The therapeutic impact of temporal artery biopsy. Lancet 1983; 2: 1217-1220
  • 17 Mukhtyar C, Guillevin L, Cid MC. et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis 2009; 68: 318-323
  • 18 Dejaco C, Ramiro S, Duftner C. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis 2018; 77: 636-643
  • 19 Blockmans D, Bley T, Schmidt W. Imaging for large-vessel vasculitis. Curr Opin Rheumatol 2009; 21: 19-28
  • 20 Cimmino MA, Camellino D. Large vessel vasculitis: Which imaging method?. Swiss Med Wkly 2017; 147: w14405
  • 21 Muratore F, Pipitone N, Salvarani C. et al. Imaging of vasculitis: State of the art. Best Pract Res Clin Rheumatol 2016; 30: 688-706
  • 22 Chrysidis S, Duftner C, Dejaco C. et al. Definitions and reliability assessment of elementary ultrasound lesions in giant cell arteritis: a study from the OMERACT Large Vessel Vasculitis Ultrasound Working Group. RMD open 2017
  • 23 Schäfer VS, Juche A, Ramiro S. et al. Ultrasound cut-off values for intima-media thickness of temporal, facial and axillary arteries in giant cell arteritis. Rheumatology (Oxford) 2017; 56: 1479-1483 . doi:http://dx.doi.org/10.1093/rheumatology/kex143
  • 24 Germanò G, Macchioni P, Possemato N. et al. Contrast-Enhanced Ultrasound of the Carotid Artery in Patients With Large Vessel Vasculitis: Correlation With Positron Emission Tomography Findings. Arthritis Care Res (Hoboken) 2017; 69: 143-149 . doi:http://dx.doi.org/10.1002/acr.22906
  • 25 Bley TA, Uhl M, Carew J. et al. Diagnostic value of high-resolution MR imaging in giant cell arteritis. Am J Neuroradiol 2007; 28: 1722-1727
  • 26 Bley TA, Wieben O, Uhl M. et al. High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. Am J Roentgenol 2005; 184: 283-287
  • 27 Mandell DM, Mossa-Basha M, Qiao Y. et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. Am J Neuroradiol 2017; 38: 218-229
  • 28 Treitl KM, Maurus S, Sommer NN. et al. 3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: A feasibility study. Eur Radiol 2017; 27: 2119-2128 . doi:10.1007/s00330-016-4525-x
  • 29 Küker W. Imaging of cerebral vasculitis. Int J Stroke 2007; 2: 184-190
  • 30 Mossa-Basha M, Hwang WD, De Havenon A. et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and ist value in differentiating intracranial vasculopathic processes. Stroke 2015; 46: 1567-1573
  • 31 Lariviere D, Benali K, Coustet B. et al. Positron emission tomography and computed tomography angiography for the diagnosis of giant cell arteritis: A real-life prospective study. Medicine 2016; 95: e4146
  • 32 Stellingwerff MD, Brouwer E, Lensen KJ. et al. Different Scoring Methods of FDG PET/CT in Giant Cell Arteritis: Need for Standardization. Medicine (Baltimore) 2015; 94: e1542 . doi:http://dx.doi.org/10.1097/MD.0000000000001542
  • 33 Besson FL, Parienti JJ, Bienvenu B. et al. Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2011; 38: 1764-1772 . doi:http://dx.doi.org/10.1007/s00259-011-1830-0
  • 34 Puppo C, Massollo M, Paparo F. et al. Giant cell arteritis: a systematic review of the qualitative and semiquantitative methods to assess vasculitis with 18F-fluorodeoxyglucose positron emission tomography. BioMed Res Int 2014; 2014: 574248 . doi:http://dx.doi.org/10.1155/2014/574248
  • 35 Direskeneli H. Clinical assessment in Takayasu’s arteritis: major challenges and controversies. Clin Exp Rheumatol 2017; 35: 189-193
  • 36 Keser G, Direskeneli H, Aksu K. Management of Takayasu arteritis: a systematic review. Rheumatology (Oxford) 2014; 53: 793-801 . doi:10.1093/rheumatology/ket320. Epub 2013 Oct 4
  • 37 McLachlan RHP, Lennox AF, Varcoe RL. et al. Endovascular treatment of critical lower limb ischemia caused by giant cell arteritis. J Vasc Surg Cases Innov Tech 2019; 5: 31-34 . Published online 2019 Jan 7. doi:10.1016/j.jvscit.2018.09.008
  • 38 Both M, Aries PM, Müller-Hülsbeck S. et al. Balloon angioplasty of arteries of the upper extremities in patients with extracranial giant-cell arteritis. Ann Rheum Dis 2006; 65: 1124-1130
  • 39 Chausson N, Olindo S, Signate A. et al. Bilateral intracerebral angioplasty in a patient with stroke caused by giant cell arteritis. Rev Neurol (Paris) 2010; 166: 328-332
  • 40 Guerrero AM, Sierra-Hidalgo F, Calleja P. et al. Intracranial internal carotid artery angioplasty and stenting in giant cell arteritis. J Neuroimaging 2015; 25: 307-309
  • 41 Dementovych N, Mishra R, Shah QA. Angioplasty and stent placement for complete occlusion of the vertebral artery secondary to giant cell arteritis. J Neurointerv Surg 2012; 4: 110-113
  • 42 Berger CT, Sommer G, Aschwanden M. et al. The clinical benefit of imaging in the diagnosis and treatment of giant cell arteritis. Swiss Med Wkly 2018; 148: w14661 . doi:smw.2018.14661. eCollection 2018 Aug 13
  • 43 Duftner C, Dejaco C, Sepriano A. et al. Imaging in diagnosis, outcome prediction and monitoring of large vessel vasculitis: a systematic literature review and meta-analysis informing the EULAR recommendations. RMD Open 2018; 4: e000612 . doi:10.1136/rmdopen-2017-000612. eCollection 2018
  • 44 Lariviere D, Benali K, Coustet B. et al. Positron emission tomography and computed tomography angiography for the diagnosis of giant cell arteritis: A real-life prospective study. Medicine 2016; 95: e4146
  • 45 Yamada I, Nakagawa T, Himeno Y. et al. Takayasu arteritis: evaluation of the thoracic aorta with CT angiography. Radiology 1998; 209: 103-109
  • 46 Yamada I, Nakagawa T, Himeno Y. et al. Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging 2000; 11: 481-487
  • 47 Blockmans D, Stroobants S, Maes A. et al. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med 2000; 108: 246-249
  • 48 Luqmani R, Lee E, Singh S. et al. The role of ultrasound compared to biopsy of temporal arteries in the diagnosis and treatment of giant cell arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. Health Technol Assess 2016; 20: 1-238
  • 49 Schmidt WA, Kraft HE, Vorpahl K. et al. Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med 1997; 337: 1336-1342
  • 50 Karahaliou M, Vaiopoulos G, Papaspyrou S. et al. Colour duplex sonography of temporal arteries before decision for biopsy: a prospective study in 55 patients with suspected giant cell arteritis. Arthritis Res Ther 2006; 8: R116
  • 51 Hauenstein C, Reinhard M, Geiger J. et al. Effects of early corticosteroid treatment on magnetic resonance imaging and ultrasonography findings in giant cell arteritis. Rheumatology 2012; 51: 1999-2003
  • 52 Bley TA, Reinhard M, Hauenstein C. et al. Comparison of duplex sonography and high-resolution magnetic resonance imaging in the diagnosis of giant cell (temporal) arteritis. Arthritis Rheum 2008; 58: 2574-2578
  • 53 Klink T, Geiger J, Both M. et al. Diagnostic Accuracy of MR Imaging of Superficial Cranial Arteries in Initial Diagnosis – Results from a Multicenter Trial. Radiology 2014; 273: 844-852 . doi:10.1148/radiol.14140056. Epub 2014 Aug 6
  • 54 Schmidt WA. Role of ultrasound in the understanding and management of vasculitis. Ther Adv Musculoskelet Dis 2014; 6: 39-47
  • 55 Hauenstein C, Reinhard M, Geiger J. et al. Effects of early corticosteroid treatment on magnetic resonance imaging and ultrasonography findings in giant cell arteritis. Rheumatology (Oxford) 2012; 51: 1999-2003
  • 56 Narvaez J, Bernad B, Roiq-Vilaseca D. et al. Influence of previous corticosteroid therapy on temporal artery biopsy yield in giant cell arteritis. Semin Arthritis Rheum 2007; 37: 13-19