Aktuelle Urol 2019; 50(05): 513-523
DOI: 10.1055/a-0895-9201
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Personalisierte Medizin bei Nierenzelltumoren

Personalised medicine in renal cell tumours
Kerstin Junker
Saarland University, Dept of Urology and Pediatric Urology, Homburg
,
Philip Zeuschner
Saarland University, Dept of Urology and Pediatric Urology, Homburg
› Author Affiliations
Further Information

Publication History

Publication Date:
05 June 2019 (online)

Zusammenfassung

Die Entdeckung von immer kleineren Tumoren durch den umfassenden Einsatz von bildgebenden Verfahren, die Erweiterung der operativen Techniken und der systemischen Therapieoptionen fordern auch für Nierentumorpatienten eine Individualisierung der Therapie. Essenzielle Voraussetzung ist dabei die Kenntnis der Tumorbiologie, da sie eine differenzierte Diagnostik, individuelle Prognosebewertung und Therapiewahl, basierend auf Biomarkern, und die Entwicklung von neuen Therapiestrategien ermöglicht.

Nierenzelltumore werden aktuell in 16 histologische Subtypen unterschieden, die durch spezifische genetische Veränderungen charakterisiert sind. Aufgrund ihrer unterschiedlichen Aggressivität ist die Kenntnis der Subtypen sowohl für die Therapieentscheidung als auch für die Nachsorge wichtig. Molekulare Marker können bei der Differenzialdiagnose eingesetzt werden. Molekulare Signaturen werden zukünftig aber auch wesentlich zur Prognosedifferenzierung innerhalb der Subtypen beitragen, wie für das klarzellige Nierenzellkarzinom bereits gezeigt wurde. Dies wird zur Entwicklung differenzierter Nachsorgeprotokolle und zu einer genaueren Selektion der Patienten für adjuvante Therapien führen. Für metastasierte Patienten stehen immer mehr medikamentöse Therapien zur Verfügung, die zielgerichtet in bestimmte zelluläre Signal- oder Kommunikationswege eingreifen. Auch wenn bisher noch keine validen prädiktiven Biomarker verfügbar sind, liegen vielversprechende Daten zu molekularen Signaturen in Korrelation mit dem Ansprechen auf Tyrosinkinaseinhibitoren oder Checkpointinhibitoren vor, die in Zukunft wesentlich besser als die klinischen Scores eine individuelle Therapiewahl ermöglichen werden.

Zur Überführung der vielversprechenden Biomarker in die klinische Praxis sind nun prospektive multizentrische Studien erforderlich. Die Berücksichtigung von bereits vorhandenen Erkenntnissen aus der Tumorbiologie der verschiedenen NZK-Entitäten sowohl bez. der veränderten Signalwege in den Tumorzellen selbst als auch der Rolle des Mikromilieus einschließlich der Immunzellen ist eine essenzielle Voraussetzung für eine weitere Verbesserung von Diagnostik und Therapie.

Abstract

The extensive use of abdominal imaging reveals an increasing number of small and asymptomatic kidney tumours, for which primary treatment versus observation strategies need to be discussed. Elaborate surgical techniques and a variety of systemic treatment options are available for patients with localised and advanced tumours. This necessitates a demanding and complex individualised decision-making process. A better understanding of tumour biology including validated biomarkers is therefore essential in order to improve diagnostics, prognostic evaluation and therapeutic strategies.

Renal cell tumours are currently subdivided into 16 histological subtypes, each characterised by specific genetic changes. As tumour aggressiveness differs significantly, knowledge of these distinct subtypes is important for adequate treatment choice and follow-up. Molecular markers may facilitate an exact diagnosis and will further differentiate the individual prognosis within each subtype, which is already possible for clear cell renal cell carcinoma (RCC). This will lead to individualised follow-up protocols and a better selection of patients benefitting from observational or adjuvant strategies after surgery.

For metastatic tumours, the number of systemic treatment options targeting specific cellular signal or communication pathways has increased tremendously. Valid predictive biomarkers for differential treatment are not available to date. However, there is promising evidence of correlations between molecular signatures and treatment response to tyrosine kinase inhibitors or checkpoint inhibitors. Biomarkers will most likely supersede clinical scores for individual treatment selection in the near future.

Prospective multicentre studies are needed so that promising biomarkers can be implemented in daily clinical practice in due consideration of existing insights from the tumour biology of the distinct RCC subtypes. This is essential for further improvement of diagnosis and treatment.

 
  • Referenzen

  • 1 Moch HHP, Ulbright TM, Reuter VE. WHO Classification of Tumours of the Urinary System and Male Genital Organs. Geneva, Switzerland: WHO press; 2016
  • 2 Junker K, Weirich G, Amin MB. et al. Genetic subtyping of renal cell carcinoma by comparative genomic hybridization. Recent Results Cancer Res 2003; 162: 169-175
  • 3 van den Berg E, Dijkhuizen T. Classification of renal cell cancer based on (cyto)genetic analysis. Contrib Nephrol 1999; 128: 51-61
  • 4 Sanjmyatav J, Hauke S, Gajda M. et al. Establishment of a multicolour fluorescence in situ hybridisation-based assay for subtyping of renal cell tumours. European urology 2013; 64: 689-691
  • 5 Cheng L, Zhang S, MacLennan GT. et al. Molecular and cytogenetic insights into the pathogenesis, classification, differential diagnosis, and prognosis of renal epithelial neoplasms. Human pathology 2009; 40: 10-29
  • 6 Wach S, Theil A, Stoehr C. et al. MicroRNA expression profiles classify renal cell carcinoma subtypes. Cancer research 2012; DOI: 10.1158/1538-7445.AM2012-5035.
  • 7 Youssef YM, White NM, Grigull J. et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. European urology 2011; 59: 721-730
  • 8 Marconi L, Dabestani S, Lam TB. et al. Systematic Review and Meta-analysis of Diagnostic Accuracy of Percutaneous Renal Tumour Biopsy. European urology 2016; 69: 660-673
  • 9 Chyhrai A, Sanjmyatav J, Gajda M. et al. Multi-colour FISH on preoperative renal tumour biopsies to confirm the diagnosis of uncertain renal masses. World journal of urology 2010; 28: 269-274
  • 10 Zisman A, Pantuck AJ, Dorey F. et al. Improved prognostication of renal cell carcinoma using an integrated staging system. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2001; 19: 1649-1657
  • 11 Leibovich BC, Blute ML, Cheville JC. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 2003; 97: 1663-1671
  • 12 Frank I, Blute ML, Cheville JC. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. The Journal of urology 2002; 168: 2395-2400
  • 13 Ravaud A, Motzer RJ, Pandha HS. et al. Adjuvant Sunitinib in High-Risk Renal-Cell Carcinoma after Nephrectomy. The New England journal of medicine 2016; 375: 2246-2254
  • 14 Haas NB, Manola J, Uzzo RG. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 2016; 387: 2008-2016
  • 15 Motzer RJ, Haas NB, Donskov F. et al. Randomized Phase III Trial of Adjuvant Pazopanib Versus Placebo After Nephrectomy in Patients With Localized or Locally Advanced Renal Cell Carcinoma. Journal of Clinical Oncology 2017; DOI: 10.1200/Jco.2017.73.5324.
  • 16 Sanjmyatav J, Junker K, Matthes S. et al. Identification of genomic alterations associated with metastasis and cancer specific survival in clear cell renal cell carcinoma. The Journal of urology 2011; 186: 2078-2083
  • 17 Sanjmyatav J, Matthes S, Muehr M. et al. Identification of high-risk patients with clear cell renal cell carcinoma based on interphase-FISH. British journal of cancer 2014; 110: 2537-2543
  • 18 Grimm J, Zeuschner P, Janssen M. et al. Metastatic risk stratification of clear cell renal cell carcinoma patients based on genomic aberrations. Genes, chromosomes & cancer 2019; DOI: 10.1002/gcc.22749.
  • 19 Turajlic S, Xu H, Litchfield K. et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018; 173: 581-594.e512
  • 20 Rini B, Goddard A, Knezevic D. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. The lancet oncology 2015; 16: 676-685
  • 21 Rini BI, Escudier B, Martini JF. et al. Validation of the 16-Gene Recurrence Score in Patients with Locoregional, High-Risk Renal Cell Carcinoma from a Phase III Trial of Adjuvant Sunitinib. Clinical Cancer Research 2018; 24: 4407-4415
  • 22 Brooks SA, Brannon AR, Parker JS. et al. ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. European urology 2014; 66: 77-84
  • 23 Buttner F, Winter S, Rausch S. et al. Survival Prediction of Clear Cell Renal Cell Carcinoma Based on Gene Expression Similarity to the Proximal Tubule of the Nephron. European urology 2015; 68: 1016-1020
  • 24 Buttner F, Winter S, Rausch S. et al. Clinical utility of the S3-score for molecular prediction of outcome in non-metastatic and metastatic clear cell renal cell carcinoma. BMC Med 2018; 16: 108
  • 25 Heinzelmann J, Unrein A, Wickmann U. et al. MicroRNAs with prognostic potential for metastasis in clear cell renal cell carcinoma: a comparison of primary tumors and distant metastases. Annals of surgical oncology 2014; 21: 1046-1054
  • 26 Wu XW, Weng LH, Li XJ. et al. Identification of a 4-microRNA Signature for Clear Cell Renal Cell Carcinoma Metastasis and Prognosis. PloS one 2012; 7 DOI: 10.1371/journal.pone.0035661.
  • 27 Lokeshwar SD, Talukder A, Yates TJ. et al. Molecular Characterization of Renal Cell Carcinoma: A Potential Three-MicroRNA Prognostic Signature. Cancer Epidem Biomar 2018; 27: 464-472
  • 28 Kowalik CG, Palmer DA, Sullivan TB. et al. Profiling microRNA from nephrectomy and biopsy specimens: predictors of progression and survival in clear cell renal cell carcinoma. BJU international 2017; 120: 428-440
  • 29 Moch H, Gasser T, Amin MB. et al. Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: a Swiss experience with 588 tumors. Cancer 2000; 89: 604-614
  • 30 Bigot P, Bernhard JC, Gill I. et al. The Subclassification of Papillary Renal Cell Carcinoma Does Not Affect Oncological Outcomes after Nephron Sparing Surgery. J Urology 2015; 193: E794-E795
  • 31 Linehan WM, Spellman PT, Ricketts CJ. et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New Engl J Med 2016; 374: 135-145
  • 32 Verbiest A, Couchy G, Job S. et al. Molecular Subtypes of Clear-cell Renal Cell Carcinoma are Prognostic for Outcome After Complete Metastasectomy. European urology 2018; 74: 474-480
  • 33 Beuselinck B, Job S, Becht E. et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clinical cancer research : an official journal of the American Association for Cancer Research 2015; 21: 1329-1339
  • 34 Hakimi AA, Voss MH, Kuo F. et al. Transcriptomic Profiling of the Tumor Microenvironment Reveals Distinct Subgroups of Clear Cell Renal Cell Cancer: Data from a Randomized Phase III Trial. Cancer Discov 2019; 9: 510-525
  • 35 McDermott DF, Huseni MA, Atkins MB. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 2018; 24: 749-757
  • 36 Turajlic S, Litchfield K, Xu H. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. The lancet oncology 2017; 18: 1009-1021
  • 37 Panda A, de Cubas AA, Stein M. et al. Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. Jci Insight 2018; DOI: 10.1172/jci.insight.121522.
  • 38 Voss MH, Reising A, Cheng Y. et al. Genomically annotated risk model for advanced renal-cell carcinoma: a retrospective cohort study. Lancet Oncology 2018; 19: 1688-1698
  • 39 Miao D, Margolis CA, Gao WH. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 2018; 359: 801-805
  • 40 Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541: 321-330
  • 41 Routy B, Le Chatelier E, Derosa L. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science (New York, NY) 2018; 359: 91-97
  • 42 Derosa L, Hellmann MD, Spaziano M. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Annals of oncology : official journal of the European Society for Medical Oncology 2018; 29: 1437-1444
  • 43 Hsieh JJ, Chen D, Wang PI. et al. Genomic Biomarkers of a Randomized Trial Comparing First-line Everolimus and Sunitinib in Patients with Metastatic Renal Cell Carcinoma. European urology 2017; 71: 405-414
  • 44 Diekstra MHM, Swen JJ, Gelderblom H. et al. A decade of pharmacogenomics research on tyrosine kinase inhibitors in metastatic renal cell cancer: a systematic review. Expert Rev Mol Diagn 2016; 16: 605-618
  • 45 Gerlinger M, Rowan AJ, Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine 2012; 366: 883-892
  • 46 Gulati S, Martinez P, Joshi T. et al. Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. European urology 2014; 66: 936-948
  • 47 Lalani A-KA, Gray KP, Albiges L. et al. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression. Oncotarget 2017; 8: 103428-103436
  • 48 Callea M, Albiges L, Gupta M. et al. Differential Expression of PD-L1 between Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma. Cancer Immunol Res 2015; 3: 1158-1164
  • 49 Liu S, Tian Z, Zhang L. et al. Combined cell surface carbonic anhydrase 9 and CD147 antigens enable high-efficiency capture of circulating tumor cells in clear cell renal cell carcinoma patients. Oncotarget 2016; 7: 59877-59891
  • 50 Hauser S, Zahalka T, Ellinger J. et al. Cell-free circulating DNA: Diagnostic value in patients with renal cell cancer. Anticancer research 2010; 30: 2785-2789
  • 51 Yamamoto Y, Uemura M, Fujita M. et al. Clinical significance of the mutational landscape and fragmentation of circulating tumor DNA in renal cell carcinoma. Cancer science 2019; 110: 617-628
  • 52 Maia MC, Bergerot PG, Dizman N. et al. Association of circulating tumor DNA (ctDNA) detection in metastatic renal cell carcinoma (mRCC) with tumor burden. Journal of Clinical Oncology 2017; DOI: 10.1200/Jco.2017.35.15_Suppl.4582.
  • 53 Heinemann FG, Tolkach Y, Deng M. et al. Serum miR-122-5p and miR-206 expression: non-invasive prognostic biomarkers for renal cell carcinoma. Clinical epigenetics 2018; 10 DOI: 10.1186/s13148-018-0444-9.
  • 54 Chanudet E, Wozniak MB, Bouaoun L. et al. Large-scale genome-wide screening of circulating microRNAs in clear cell renal cell carcinoma reveals specific signatures in late-stage disease. International journal of cancer 2017; 141: 1730-1740
  • 55 Yadav S, Khandelwal M, Seth A. et al. Serum microRNA Expression Profiling: Potential Diagnostic Implications of a Panel of Serum microRNAs for Clear Cell Renal Cell Cancer. Urology 2017; 104: 64-69
  • 56 Schubert M, Junker K, Heinzelmann J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: Where do we stand in biomarker development?. J Cancer Res Clin 2016; 142: 1673-1695
  • 57 Zhang W, Ni M, Su Y. et al. MicroRNAs in Serum Exosomes as Potential Biomarkers in Clear-cell Renal Cell Carcinoma. Eur Urol Focus 2018; 4: 412-419
  • 58 Wang X, Wang T, Chen C. et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J Cell Biochem 2018; DOI: 10.1002/jcb.27347.
  • 59 De Palma G, Sallustio F, Curci C. et al. The Three-Gene Signature in Urinary Extracellular Vesicles from Patients with Clear Cell Renal Cell Carcinoma. J Cancer 2016; 7: 1960-1967
  • 60 Butz H, Nofech-Mozes R, Ding Q. et al. Exosomal MicroRNAs Are Diagnostic Biomarkers and Can Mediate Cell-Cell Communication in Renal Cell Carcinoma. Eur Urol Focus 2016; 2: 210-218
  • 61 Raimondo F, Morosi L, Corbetta S. et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol Biosyst 2013; 9: 1220-1233
  • 62 Fujii N, Hirata H, Ueno K. et al. Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget 2017; 8: 109877-109888
  • 63 Du MJ, Giridhar KV, Tian YJ. et al. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget 2017; 8: 63703-63714
  • 64 Qu L, Ding J, Chen C. et al. Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell 2016; 29: 653-668
  • 65 Schoffski P, Wozniak A, Escudier B. et al. Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial. European journal of cancer (Oxford, England : 1990) 2017; 87: 147-163
  • 66 Choueiri TK, Plimack E, Arkenau H-T. et al. Biomarker-Based Phase II Trial of Savolitinib in Patients With Advanced Papillary Renal Cell Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2017; 35: 2993-3001