Pneumologie 2019; 73(06): 347-373
DOI: 10.1055/a-0895-6494
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Atmen: Luftschadstoffe und Gesundheit – Teil II

Breathing: Ambient Air Pollution and Health – Part II
H. Schulz
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
S. Karrasch
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
2   Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, Klinikum der Ludwig-Maximilians-Universität, München; Comprehensive Pneumology Center Munich (CPC-M), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), München
,
G. Bölke
3   Charité – Universitätsmedizin Berlin, Arbeitsbereich ambulante Pneumologie der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Berlin
,
J. Cyrys
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
C. Hornberg
4   Universität Bielefeld, Fakultät für Gesundheitswissenschaften, AG Umwelt und Gesundheit, Bielefeld
,
R. Pickford
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
A. Schneider
1   Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Epidemiologie, Neuherberg/München
,
C. Witt
3   Charité – Universitätsmedizin Berlin, Arbeitsbereich ambulante Pneumologie der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie, Berlin
,
B. Hoffmann
5   Heinrich-Heine-Universität Düsseldorf, Medizinische Fakultät, Institut für Arbeits-, Sozial- und Umweltmedizin, Düsseldorf
› Author Affiliations
Further Information

Publication History

Publication Date:
11 June 2019 (online)

Zusammenfassung

Der zweite Teil des DGP-Positionspapiers zur Gesundheitsgefährdung durch Luftschadstoffe gibt eine Übersicht über die aktuelle Schadstoffbelastung in Deutschland und deren Entwicklung in den letzten 20 Jahren. Zum anderen werden die Effekte auf das kardiovaskuläre System und die zugrundeliegenden biologischen Mechanismen vorgestellt.

Luftschadstoffe bilden ein hochkomplexes und dynamisches System aus Tausenden organischen und anorganischen Bestandteilen natürlichen oder anthropogenen Ursprungs. Die Schadstoffe werden lokal produziert oder durch Ferntransport über Hunderte von Kilometern regional eingebracht und dort zusätzlich durch die meteorologischen Verhältnisse modifiziert. Entsprechend den gesetzlichen Vorgaben wird die Qualität der Außenluft nach einheitlichen Vorgaben überwacht, die u. a. die Messung der Immission durch Feinstaub, mit bis zu 2,5 µm (PM2.5) oder bis 10 µm (PM10) aerodynamischem Durchmesser, sowie der Ozon (O3)- und der Stickstoffdioxidbelastung (NO2) vorsieht. Die Luftreinhaltungsmaßnamen haben dazu geführt, dass die Schadstoffbelastung in den vergangenen 20 Jahren in Deutschland deutlich zurückgegangen ist, sodass jetzt v. a. die Gesundheitsgefährdung bei geringer Belastung im Vordergrund steht. Überschreitungen der geltenden europäischen Grenzwerte für Schwefeldioxid, Kohlenmonoxid, Benzol und Blei werden nicht mehr beobachtet. Auch ist die Zahl der Tage mit erhöhten Ozonkonzentrationen zurückgegangen, wenngleich der Jahresmittelwert unverändert geblieben ist. Die Entwicklung von Feinstaub und NO2 ist zwar rückläufig, jedoch werden immer noch die geltenden Grenzwerte für NO2 in den Städten an etwa 40 % der verkehrsnahen Messstationen überschritten. Auch werden die strengeren, gesundheitlich abgeleiteten Richtwerte der WHO für PM2.5, PM10 sowie für NO2 nicht eingehalten, sodass für die deutsche Bevölkerung derzeit kein optimaler Schutz vor einer Gesundheitsgefährdung durch Luftverschmutzung gegeben ist.

Die Ergebnisse zahlreicher Quer- und Längsschnittstudien der letzten Jahrzehnte unterstreichen die adversen Effekte der Luftschadstoffe, insbesondere des Feinstaubes, auf das kardiovaskuläre System, wenngleich die Evidenz für die einzelnen Endpunkte noch als unterschiedlich einzustufen ist. Die Studien zeigen auch, dass die kardiovaskulären Auswirkungen von größerer gesundheitlicher Bedeutung für die Bevölkerung sind als die auf den Atemtrakt. Die existierende Evidenz für die kardiovaskuläre Mortalität, Krankenhauseinweisungen, ischämische Herzerkrankungen bzw. Herzinfarkt und Apoplex kann als stark angesehen werden, dagegen ist diese für die Herzinsuffizienz eher moderat. Während die Evidenz für luftschadstoffassoziierte kurzfristige Effekte auf die vegetative Balance des Herzens als ausreichend anzusehen ist, sind langfristige Effekte noch als unklar einzustufen, ebenso wie die heterogenen Studienergebnisse zur luftschadstoffassoziierten Arrhythmogenese, die derzeit eine klare Schlussfolgerung noch nicht zulassen. Ein großer Teil der Studien deutet darauf hin, dass Luftschadstoffe akut und langfristig zum Anstieg des Blutdrucks beitragen können, zu einer gestörten vaskulären Homöostase mit endothelialer Dysfunktion führen sowie die Progression atherosklerotischer Veränderungen fördern können. Diese Effekte stellen biologisch plausible Mechanismen für die mit Luftschadstoffen assoziierten fatalen Ereignisse dar. Kurzzeiteffekte bergen womöglich für gesunde Menschen eher kein Risiko, können aber als plausibler Vorläufer von fatalen Ereignissen bei suszeptiblen Patienten angesehen werden, während repetitive Expositionen bzw. eine hohe Langzeitbelastung zur Entwicklung von kardiovaskulären Erkrankungen auch bei Gesunden beitragen können.

Abstract

The second part of the DGP-statement on adverse health effects of ambient air pollution provides an overview of the current ambient air quality in Germany and its development in the past 20 years. Further, effects of air pollution on the cardiovascular system und underlying pathophysiological mechanisms are introduced.

Air pollutants form a highly complex and dynamic system of thousands of organic and inorganic components from natural and anthropogenic sources. The pollutants are produced locally or introduced by long-range transport over hundreds of kilometers and are additionally subjected to local meteorological conditions. According to air quality regulations ambient air quality is monitored under uniform standards including immission of particulate matter, up to 2.5 µm (PM2.5) or 10 µm (PM10) in aerodynamic diameter, and of nitrogen dioxide (NO2) or ozone (O3). The clean air measures of recent years led to a continuous decline of air pollution in the past 20 years in Germany. Accordingly, the focus is nowadays directed at population-related health hazards caused by low concentrations of air pollution. Exceeded limits for sulfur dioxide, carbon monoxide, benzene and lead are not detected anymore. Also the number of days with increased ozone concentration declined, although the annual mean concentration is unaltered. Decreasing concentrations of particulate matter and NO2 have been observed, however, about 40 % of the monitoring stations at urban traffic sites still measure values exceeding current limits for NO2. Moreover, the stricter, solely health-based WHO-standards for PM2.5, PM10 and NO2 are still not met so that an optimal protection from air pollution-related health hazards is currently not given for the German population.

In recent years, the findings of numerous cross-sectional and longitudinal studies underscored adverse effects of air pollution on the cardiovascular system, especially for particulate matter, although the level of evidence still varies for the different health outcomes. Further, the studies show that cardiovascular health hazards on the population level are of higher relevance than those for the respiratory system. The existing evidence for cardiovascular mortality, hospitalization, ischemic heart diseases, myocardial infarction and stroke can be regarded as strong, while that for heart failure is rather moderate. While the evidence for air pollution-related short-term alteration of the cardiac autonomic balance can be considered as sufficient, long-term effects are still unclear. Likewise, the heterogeneous findings on air pollution-related arrhythmia do currently not allow a distinct conclusion in this regard. A large number of studies support the observation that both, short- and long-term air pollution exposure contribute to increased blood pressure, may impair vascular homeostasis, induce endothelial dysfunction and promote the progression of atherosclerotic lesions. These effects provide reasonable biological explanation for the fatal events associated with exposure to air pollution. Short-term exposure may not pose a significant risk on healthy individuals but may be considered as precursor for fatal events in susceptible populations, while repetitive or long-term exposure may contribute to the development of cardiovascular diseases even in healthy subjects.

 
  • Literatur

  • 1 Schulz H, Karrasch S, Bölke G. et al. Atmen: Luftschadstoffe und Gesundheit. Berlin: Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e. V.; 2018 https://pneumologie.de/fileadmin/user_upload/DGP_Luftschadstoffe_Positionspapier_20181127.pdf
  • 2 Schulz H, Karrasch S, Bölke G. et al. Atmen: Luftschadstoffe und Gesundheit – Teil I. Pneumologie 2019; 73: 288-305
  • 3 Verein Deutscher Ingenieure. VDI 3782 Blatt 7:2003-11 Umweltmeteorologie – Kfz-Emissionsbestimmung – Luftbeimengungen. Berlin: Beuth Verlag; 2003
  • 4 European Commission. Air quality standards. 2018 https://www.eea.europa.eu/themes/air/air-quality-standards
  • 5 Umweltbundesamt. Luftschadstoffe im Überblick. 2018 https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick Abgerufen 20.10.2018
  • 6 Umweltbundesamt. Luftmessnetze der Bundesländer. 2019 https://www.umweltbundesamt.de/themen/luft/messenbeobachtenueberwachen/luftmessnetze-der-bundeslaender Abgerufen 08.05.2019
  • 7 Umweltbundesamt. Luftqualität 2017. 2018 https://www.umweltbundesamt.de/publikationen/luftqualitaet-2017
  • 8 Umweltbundesamt. Luftqualität 2018. 2019 https://www.umweltbundesamt.de/publikationen/luftqualitaet-2018
  • 9 WHO. Evolution of WHO air quality guidelines: past, present and future. 2017 http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2017/evolution-of-who-air-quality-guidelines-past,-present-and-future-2017
  • 10 European Environment Agency. Air quality in Europe – 2017 report. 2017 https://skupnostobcin.si/wp-content/uploads/2017/10/airquality2017-15-29.pdf
  • 11 European Environment Agency. Air quality in Europe – 2018 report. 2018 https://www.eea.europa.eu/publications/air-quality-in-europe-2018
  • 12 Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 2004; 1: 315-320
  • 13 Health Effects Institute (HEI). Review Panel on Ultrafine Particles. Understanding the Health Effects of Ambient Ultrafine Particles. Boston, MA, USA: Recycled Paper Printing; 2013
  • 14 Umweltbundesamt. Quellen der Luftschadstoff-Emissionen. 2018 https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/quellen-der-luftschadstoffe
  • 15 Umeltbundesamt. Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer Emissionen 1990 – 2016. 2018 https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2018_02_14_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx Abrufdatum 23. 02. 2018
  • 16 Umweltbundesamt. Trend der Luftschadstoff-Emissionen. 2018 http://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/trend-der-luftschadstoff-emissionen Abrufdatum 15. 08. 2018
  • 17 Lenschow P, Abraham HJ, Kutzner K. et al. Some ideas about the sources of PM10. Atmospheric Environment 2001; 35: 23-33
  • 18 Schneider ACJ, Breitner S, Kraus U. et al. Quantifizierung von umweltbedingten Krankheitslasten aufgrund der Stickstoffdioxid-Exposition in Deutschland. Umweltbundesamt; 2018
  • 19 Pfäfflin F. Grundlagen für die Entwicklung einer modellgestützten flächenbezogenen Beurteilung der Luftqualität. 7. Freiburger Workshop „Luftreinhaltung und Modelle“, 15. – 16. 5. 2018. Freiburg: IVU Umwelt GmbH; 2018
  • 20 Umweltbundesamt. Trend der PM10-Jahresmittelwerte. 2018 https://www.umweltbundesamt.de/daten/luft/feinstaub-belastung#textpart-1 Abrufdatum 15. 08. 2018
  • 21 Senatsverwaltung für Umwelt VuKS. Langfristige Entwicklung der Luftqualität, Feinstaub PM2,5. 2018 https://www.berlin.de/senuvk/umwelt/luftqualitaet/de/entwicklung/lang_pm2_5.shtml Abrufdatum 15. 08. 2018
  • 22 Landesamt für Natur UuVN-WLN. Jahreskenngrößen und Jahresberichte. 2018 https://www.lanuv.nrw.de/umwelt/luft/immissionen/berichte-und-trends/jahreskenngroessen-und-jahresberichte/ Abrufdatum 15. 08. 2018
  • 23 Landesamt für Umwelt LuG, Freistaat Sachsen: (LfULG). Luftqualität in Sachsen, Jahresbericht 2013. 2013 https://publikationen.sachsen.de/bdb/artikel/22876 Abrufdatum 15. 08. 2018
  • 24 Landesamt für Umwelt LuG, Freistaat Sachsen (LfULG). Luftqualität in Sachsen, Jahresbericht 2017. 2017 https://publikationen.sachsen.de/bdb/artikel/30895 Abrufdatum 15. 08. 2018
  • 25 Umweltbundesamt. Trend der NO2-Jahresmittelwerte. 2018 https://www.umweltbundesamt.de/daten/luft/stickstoffdioxid-belastung#textpart-1 Abrufdatum 15. 08. 2018
  • 26 Umweltbundesamt. Trend der Ozonjahresmittelwerte. 2018 https://www.umweltbundesamt.de/daten/luft/ozon-belastung#textpart-3 Abrufdatum 15. 08. 2018
  • 27 Clemen S, Kaupp H. Zwei Jahrzehnte Rußmessungen im Berliner Luftgütemessnetz. In: Kaupp H. Hrsg. Gefahrstoffe – Reinhaltung der Luft. 2018: 109-116
  • 28 German Ultrafine Aerosol Network (GUAN). 2018 http://wiki.tropos.de/index.php/GUAN
  • 29 Birmili W, Sun J, Weinhold K. et al. Atmospheric aerosol measurements in the German Ultrafine Aerosol Network (GUAN) – Part III: Black Carbon mass and particle number concentrations 2009 – 2014. Gefahrstoffe – Reinhaltung der Luft 2015; 11/12: 479-488
  • 30 Umweltbundesamt. Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h PM10-Grenzwertes. 2018 https://www.umweltbundesamt.de/daten/luft/feinstaub-belastung#textpart-2 Abrufdatum 15. 08. 2018
  • 31 Umweltbundesamt. Prozentualer Anteil der Messstationen mit Überschreitung des Stickstoffdioxid-Jahresgrenzwertes. 2018 https://www.umweltbundesamt.de/daten/luft/stickstoffdioxid-belastung#textpart-2 Abrufdatum 15. 08. 2018
  • 32 Umweltbundesamt. Anzahl der Tage mit Überschreitungen von 180 µg/m3 und 240 µg/m3 . 2018 https://www.umweltbundesamt.de/daten/luft/ozon-belastung#textpart-1 Abrufdatum 15. 08. 2018
  • 33 Umweltbundesamt. Anzahl der Tage mit Überschreitung des Ozon-Zielwerts (120 µg/m3) zum Schutz der menschlichen Gesundheit. 2018 https://www.umweltbundesamt.de/daten/luft/ozon-belastung#textpart-2 Abrufdatum 15. 08. 2018
  • 34 WHO. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. 2006 https://apps.who.int/iris/handle/10665/69477
  • 35 Umweltbundesamt. Abstand der durchschnittlichen Schadstoffkonzentrationen zu WHO-Empfehlungen bzw. festgestellten Wirkungsschwellen im städtischen Hintergrund deutscher Ballungsräume. 2018 https://www.umweltbundesamt.de/daten/luft/luftbelastung-in-ballungsraeumen#textpart-1 Abrufdatum 15. 08. 2018
  • 36 WHO. Health risks of air pollution in Europe – HRAPIE project. New emerging risks to health from air pollution – results from the survey of experts. 2013 http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/health-risks-of-air-pollution-in-europe-hrapie-project.-new-emerging-risks-to-health-from-air-pollution-results-from-the-survey-of-experts
  • 37 WHO. Cardiovascular diseases (CVDs). 2019 http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) Abrufdatum 25. 03. 2019
  • 38 Dornquast C, Kroll LE, Neuhauser HK. et al. Regional Differences in the Prevalence of Cardiovascular Disease. Dtsch Arztebl Int 2016; 113: 704-711
  • 39 Brook RD, Rajagopalan S, Pope 3rd CA. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121: 2331-2378
  • 40 Pope 3rd CA, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 2009; 360: 376-386
  • 41 Laden F, Schwartz J, Speizer FE. et al. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 2006; 173: 667-672
  • 42 Newby DE. et al., on behalf of Esc Working Group on Thrombosis EAfCP, Rehabilitation. Expert position paper on air pollution and cardiovascular disease. Eur Heart J 2015; 36: 83-93
  • 43 Thurston GD, Kipen H, Annesi-Maesano I. et al. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 2017; 49(1) DOI: 10.1183/13993003.00419-2016.
  • 44 Katsouyanni K, Touloumi G, Samoli E. et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology (Cambridge, Mass) 2001; 12: 521-531
  • 45 Analitis A, Katsouyanni K, Dimakopoulou K. et al. Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology (Cambridge, Mass) 2006; 17: 230-233
  • 46 Sunyer J, Ballester F, Tertre AL. et al. The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-II study). Eur Heart J 2003; 24: 752-760
  • 47 Samet JM, Dominici F, Zeger SL. et al. The National Morbidity, Mortality, and Air Pollution Study. Part I: Methods and methodologic issues. Res Rep Health Eff Inst 2000; (94 Pt 1): 5-14 discussion 75 – 84
  • 48 Samet JM, Zeger SL, Dominici F. et al. The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and mortality from air pollution in the United States. Research report 2000; 94: 5-70 discussion 71 – 79
  • 49 Gryparis A, Forsberg B, Katsouyanni K. et al. Acute effects of ozone on mortality from the “air pollution and health: a European approach” project. Am J Respir Crit Care Med 2004; 170: 1080-1087
  • 50 Pope 3rd CA, Burnett RT, Thun MJ. et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002; 287: 1132-1141
  • 51 Pope 3rd CA, Thun MJ, Namboodiri MM. et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 1995; 151: 669-674
  • 52 Krewski D. Evaluating the effects of ambient air pollution on life expectancy. N Engl J Med 2009; 360: 413-415
  • 53 Krewski DB, Burnett RT, Goldberg MS. et al. Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality: A Special Report of the Institute’s Particle Epidemiology Reanalysis Project. Cambridge MA: Health Effects Institute; 2000
  • 54 Dockery DW, Pope 3rd CA, Xu X. et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993; 329: 1753-1759
  • 55 Beelen R, Hoek G, van den Brandt PA. et al. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect 2008; 116: 196-202
  • 56 Brunekreef B, Beelen R, Hoek G. et al. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Research report 2009; 5-71 discussion 73 – 89
  • 57 Beelen R, Raaschou-Nielsen O, Stafoggia M. et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet (London, England) 2014; 383: 785-795
  • 58 Crouse DL, Peters PA, Villeneuve PJ. et al. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; a subset of the Canadian Census Health and Environment Cohort (CanCHEC). J Expo Sci Environ Epidemiol 2015; 25: 482-489
  • 59 Cesaroni G, Badaloni C, Gariazzo C. et al. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ Health Perspect 2013; 121: 324-331
  • 60 Crouse DL, Peters PA, van Donkelaar A. et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environ Health Perspect 2012; 120: 708-714
  • 61 Pinault L, Tjepkema M, Crouse DL. et al. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ Health 2016; 15: 18
  • 62 Thurston GD, Ahn J, Cromar KR. et al. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort. Environ Health Perspect 2016; 124: 484-490
  • 63 Cesaroni G, Forastiere F, Stafoggia M. et al. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 2014; 348: f7412
  • 64 Stafoggia M, Cesaroni G, Peters A. et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect 2014; 122: 919-925
  • 65 Miller KA, Siscovick DS, Sheppard L. et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 2007; 356: 447-458
  • 66 Ruckerl R, Schneider A, Breitner S. et al. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal Toxicol 2011; 23: 555-592
  • 67 Jerrett M, Burnett RT, Pope CA. et al. Long-term ozone exposure and mortality. N Engl J Med 2009; 360: 1085-1095
  • 68 Schindler C, Kunzli N, Bongard JP. et al. Short-term variation in air pollution and in average lung function among never-smokers. The Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA). Am J Respir Crit Care Med 2001; 163: 356-361
  • 69 Hampel R, Breitner S, Zareba W. et al. Immediate ozone effects on heart rate and repolarisation parameters in potentially susceptible individuals. Occup Environ Med 2012; 69: 428-436
  • 70 Ren C, O’Neill MS, Park SK. et al. Ambient temperature, air pollution, and heart rate variability in an aging population. Am J Epidemiol 2011; 173: 1013-1021
  • 71 Rich DQ, Mittleman MA, Link MS. et al. Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. Environ Health Perspect 2006; 114: 120
  • 72 Zareba W, Nomura A, Couderc JP. Cardiovascular effects of air pollution: what to measure in ECG?. Environ Health Perspect 2001; 109 (Suppl. 04) 533-538
  • 73 de Bruyne MC, Kors JA, Hoes AW. et al. Both decreased and increased heart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly: the Rotterdam Study. Am J Epidemiol 1999; 150: 1282-1288
  • 74 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996; 93: 1043-1065
  • 75 Buccelletti E, Gilardi E, Scaini E. et al. Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci 2009; 13: 299-307
  • 76 Pieters N, Plusquin M, Cox B. et al. An epidemiological appraisal of the association between heart rate variability and particulate air pollution: a meta-analysis. Heart 2012; 98: 1127-1135
  • 77 Chahine T, Baccarelli A, Litonjua A. et al. Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environ Health Perspect 2007; 115: 1617
  • 78 Schwartz J, Litonjua A, Suh H. et al. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 2005; 60: 455-461
  • 79 Rich DQ, Peters A, Schneider A. et al. Ambient and Controlled Particle Exposures as Triggers for Acute ECG Changes. Research report (Health Effects Institute) 2016; 5-75
  • 80 Baja ES, Schwartz JD, Wellenius GA. et al. Traffic-related air pollution and QT interval: modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ Health Perspect 2010; 118: 840-846
  • 81 Henneberger A, Zareba W, Ibald-Mulli A. et al. Repolarization changes induced by air pollution in ischemic heart disease patients. Environ Health Perspect 2005; 113: 440-446
  • 82 Anderson HR, Armstrong B, Hajat S. et al. Air pollution and activation of implantable cardioverter defibrillators in London. Epidemiology (Cambridge, Mass) 2010; 21: 405-413
  • 83 Berger A, Zareba W, Schneider A. et al. Runs of ventricular and supraventricular tachycardia triggered by air pollution in patients with coronary heart disease. J Occup Environ Med 2006; 48: 1149-1158
  • 84 Link MS, Dockery DW. Air pollution and the triggering of cardiac arrhythmias. Curr Opin Cardiol 2010; 25: 16
  • 85 Link MS, Luttmann-Gibson H, Schwartz J. et al. Acute exposure to air pollution triggers atrial fibrillation. J Am Coll Cardiol 2013; 62: 816-825
  • 86 Peters A, Liu E, Verrier RL. et al. Air pollution and incidence of cardiac arrhythmia. Epidemiology (Cambridge, Mass) 2000; 11: 11-17
  • 87 Zanobetti A, Coull BA, Gryparis A. et al. Associations between arrhythmia episodes and temporally and spatially resolved black carbon and particulate matter in elderly patients. Occup Environ Med 2014; 71: 201-207
  • 88 Teng T-HK, Williams TA, Bremner A. et al. A systematic review of air pollution and incidence of out-of-hospital cardiac arrest. J Epidemiol Community Health 2014; 68: 37-43
  • 89 Raza A, Bellander T, Bero-Bedada G. et al. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm. Eur Heart J 2014; 35: 861-868
  • 90 Künzli N, Perez L, von Klot S. et al. Investigating air pollution and atherosclerosis in humans: concepts and outlook. Prog Cardiovasc Dis 2011; 53: 334-343
  • 91 Krishnan RM, Adar SD, Szpiro AA. et al. Vascular responses to long-and short-term exposure to fine particulate matter: MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution). J Am Coll Cardiol 2012; 60: 2158-2166
  • 92 Wilker EH, Ljungman PL, Rice MB. et al. Relation of long-term exposure to air pollution to brachial artery flow-mediated dilation and reactive hyperemia. Am J Cardiol 2014; 113: 2057-2063
  • 93 Langrish JP, Unosson J, Bosson J. et al. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J Am Heart Assoc 2013; 2: e004309
  • 94 Mahmoudi M, Curzen N, Gallagher PJ. Atherogenesis: the role of inflammation and infection. Histopathology 2007; 50: 535-546
  • 95 Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 2003; 23: 168-175
  • 96 Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105: 1135-1143
  • 97 Widlansky ME, Gokce N, Keaney Jr JF. et al. The clinical implications of endothelial dysfunction. J Am Coll Cardiol 2003; 42: 1149-1160
  • 98 Vita JA. Endothelial function. Circulation 2011; 124: e906-e912
  • 99 Schneider A, Neas L, Herbst MC. et al. Endothelial dysfunction: associations with exposure to ambient fine particles in diabetic individuals. Environ Health Perspect 2008; 116: 1666
  • 100 O’Neill MS, Veves A, Zanobetti A. et al. Diabetes enhances vulnerability to particulate air pollution – associated impairment in vascular reactivity and endothelial function. Circulation 2005; 111: 2913-2920
  • 101 Briet M, Collin C, Laurent S. et al. Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension (Dallas, Tex: 1979) 2007; 50: 970-976
  • 102 Brook RD, Brook JR, Urch B. et al. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 2002; 105: 1534-1536
  • 103 Holay MP, Paunikar NP, Joshi PP. et al. Effect of passive smoking on endothelial function in: healthy adults. J Assoc Physicians India 2004; 52: 114-117
  • 104 Howard G, Wagenknecht LE. Environmental tobacco smoke and measures of subclinical vascular disease. Environ Health Perspect 1999; 107 (Suppl. 06) 837-840
  • 105 Kato T, Inoue T, Morooka T. et al. Short-term passive smoking causes endothelial dysfunction via oxidative stress in nonsmokers. Can J Physiol Pharmacol 2006; 84: 523-529
  • 106 Lewington S, Clarke R, Qizilbash N. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet (London, England) 2002; 360: 1903-1913
  • 107 Lim SS, Vos T, Flaxman AD. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224-2260
  • 108 Kearney PM, Whelton M, Reynolds K. et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217-223
  • 109 Brook RD, Rajagopalan S. Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens 2009; 3: 332-350
  • 110 Chen H, Burnett RT, Kwong JC. et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 2014; 129: 562-569
  • 111 Liang R, Zhang B, Zhao X. et al. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens 2014; 32: 2130-2141
  • 112 Dvonch JT, Kannan S, Schulz AJ. et al. Acute effects of ambient particulate matter on blood pressure: differential effects across urban communities. Hypertension (Dallas, Tex: 1979) 2009; 53: 853-859
  • 113 Delfino RJ, Tjoa T, Gillen DL. et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology (Cambridge, Mass) 2010; 21: 396-404
  • 114 Ibald-Mulli A, Stieber J, Wichmann HE. et al. Effects of air pollution on blood pressure: a population-based approach. Am J Public Health 2001; 91: 571-577
  • 115 Lin LY, Lin CY, Lin YC. et al. The effects of indoor particles on blood pressure and heart rate among young adults in Taipei, Taiwan. Indoor Air 2009; 19: 482-488
  • 116 Urch B, Silverman F, Corey P. et al. Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ Health Perspect 2005; 113: 1052-1055
  • 117 Zanobetti A, Canner MJ, Stone PH. et al. Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation 2004; 110: 2184-2189
  • 118 Mordukhovich I, Wilker E, Suh H. et al. Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ Health Perspect 2009; 117: 1767-1772
  • 119 Jansen KL, Larson TV, Koenig JQ. et al. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ Health Perspect 2005; 113: 1741-1746
  • 120 Madsen C, Nafstad P. Associations between environmental exposure and blood pressure among participants in the Oslo Health Study (HUBRO). Eur J Epidemiol 2006; 21: 485-491
  • 121 Harrabi I, Rondeau V, Dartigues JF. et al. Effects of particulate air pollution on systolic blood pressure: A population-based approach. Environ Res 2006; 101: 89-93
  • 122 Ibald-Mulli A, Timonen KL, Peters A. et al. Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ Health Perspect 2004; 112: 369-377
  • 123 Brook RD. You are what you breathe: evidence linking air pollution and blood pressure. Curr Hypertens Rep 2005; 7: 427-434
  • 124 Chuang KJ, Yan YH, Chiu SY. et al. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occup Environ Med 2011; 68: 64-68
  • 125 Fuks K, Moebus S, Hertel S. et al. Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environ Health Perspect 2011; 119: 1706-1711
  • 126 Lee WH, Choo JY, Son JY. et al. Association between long-term exposure to air pollutants and prevalence of cardiovascular disease in 108 South Korean communities in 2008 – 2010: A cross-sectional study. Sci Total Environ 2016; 565: 271-278
  • 127 Dong GH, Qian ZM, Xaverius PK. et al. Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension (Dallas, Tex: 1979) 2013; 61: 578-584
  • 128 Foraster M, Basagana X, Aguilera I. et al. Association of long-term exposure to traffic-related air pollution with blood pressure and hypertension in an adult population-based cohort in Spain (the REGICOR study). Environ Health Perspect 2014; 122: 404-411
  • 129 Sorensen M, Hoffmann B, Hvidberg M. et al. Long-term exposure to traffic-related air pollution associated with blood pressure and self-reported hypertension in a Danish cohort. Environ Health Perspect 2012; 120: 418-424
  • 130 Giorgini P, Di Giosia P, Grassi D. et al. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature. Curr Pharm Des 2016; 22: 28-51
  • 131 Pitchika A, Hampel R, Wolf K. et al. Long-term associations of modeled and self-reported measures of exposure to air pollution and noise at residence on prevalent hypertension and blood pressure. Sci Total Environ 2017; 593: 337-346
  • 132 Schneider A, Neas LM, Graff DW. et al. Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals. Part Fibre Toxicol 2010; 7: 14
  • 133 Sorensen M, Hvidberg M, Hoffmann B. et al. Exposure to road traffic and railway noise and associations with blood pressure and self-reported hypertension: a cohort study. Environ Health 2011; 10: 92
  • 134 Foraster M, Kunzli N, Aguilera I. et al. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic. Environ Health Perspect 2014; 122: 1193-1200
  • 135 Babisch W, Wolf K, Petz M. et al. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: the KORA study. Environ Health Perspect 2014; 122: 492-498
  • 136 Dratva J, Phuleria HC, Foraster M. et al. Transportation noise and blood pressure in a population-based sample of adults. Environ Health Perspect 2012; 120: 50-55
  • 137 Resnick HE, Lindsay RS, McDermott MM. et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: the Strong Heart Study. Circulation 2004; 109: 733-739
  • 138 Lamina C, Meisinger C, Heid IM. et al. Association of ankle-brachial index and plaques in the carotid and femoral arteries with cardiovascular events and total mortality in a population-based study with 13 years of follow-up. Eur Heart J 2006; 27: 2580-2587
  • 139 Ankle Brachial Index Collaboration. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA 2008; 300: 197
  • 140 Mehta AJ, Zanobetti A, Koutrakis P. et al. Associations between short-term changes in air pollution and correlates of arterial stiffness: The Veterans Affairs Normative Aging Study, 2007 – 2011. Am J Epidemiol 2013; 179: 192-199
  • 141 Lundbäck M, Mills NL, Lucking A. et al. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol 2009; 6: 7
  • 142 Hoffmann B, Moebus S, Mohlenkamp S. et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 2007; 116: 489-496
  • 143 Diez Roux AV, Auchincloss AH, Franklin TG. et al. Long-term exposure to ambient particulate matter and prevalence of subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 2008; 167: 667-675
  • 144 Wang Y, Wellenius GA, Hickson DA. et al. Residential proximity to traffic-related pollution and atherosclerosis in 4 vascular beds among African-American adults: results from the Jackson Heart Study. Am J Epidemiol 2016; 1-12
  • 145 Rivera M, Basagaña X, Aguilera I. et al. Association between long-term exposure to traffic-related air pollution and subclinical atherosclerosis: the REGICOR study. Environ Health Perspect 2013; 121: 223
  • 146 Zhang S, Wolf K, Breitner S. et al. Long-term effects of air pollution on ankle-brachial index. Environ Int 2018; 118: 17-25
  • 147 Lorenz MW, Polak JF, Kavousi M. et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet 2012; 379: 2053-2062
  • 148 Künzli N, Jerrett M, Mack WJ. et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 2005; 113: 201
  • 149 Perez L, Wolf K, Hennig F. et al. Air pollution and atherosclerosis: a cross-sectional analysis of four European cohort studies in the ESCAPE study. Environ Health Perspect 2015; 123: 597
  • 150 Provost EB, Madhloum N, Panis LI. et al. Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence. PLoS One 2015; 10: e0127014
  • 151 Adar SD, Sheppard L, Vedal S. et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med 2013; 10: e1001430
  • 152 Kalsch H, Hennig F, Moebus S. et al. Are air pollution and traffic noise independently associated with atherosclerosis: the Heinz Nixdorf Recall Study. Eur Heart J 2014; 35: 853-860
  • 153 Kaufman JD, Adar SD, Barr RG. et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet 2016; 388: 696-704
  • 154 Newman JD, Thurston GD, Cromar K. et al. Particulate air pollution and carotid artery stenosis. J Am Coll Cardiol 2015; 65: 1150-1151
  • 155 Forastiere F, Agabiti N. Assessing the link between air pollution and heart failure. Lancet (London, England) 2013; 382: 1008-1010
  • 156 Sacks JD, Stanek LW, Luben TJ. et al. Particulate matter-induced health effects: who is susceptible?. Environ Health Perspect 2011; 119: 446-454
  • 157 Shah AS, Langrish JP, Nair H. et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet (London, England) 2013; 382: 1039-1048
  • 158 Atkinson RW, Carey IM, Kent AJ. et al. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology (Cambridge, Mass) 2013; 24: 44-53
  • 159 Zhang LW, Chen X, Xue XD. et al. Long-term exposure to high particulate matter pollution and cardiovascular mortality: a 12-year cohort study in four cities in northern China. Environ Int 2014; 62: 41-47
  • 160 Wellenius GA, Yeh GY, Coull BA. et al. Effects of ambient air pollution on functional status in patients with chronic congestive heart failure: a repeated-measures study. Environ Health 2007; 6: 26
  • 161 Barclay JL, Miller BG, Dick S. et al. A panel study of air pollution in subjects with heart failure: negative results in treated patients. Occup Environ Med 2009; 66: 325-334
  • 162 Mustafic H, Jabre P, Caussin C. et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 2012; 307: 713-721
  • 163 Bhaskaran K, Hajat S, Haines A. et al. Effects of air pollution on the incidence of myocardial infarction. Heart 2009; 95: 1746-1759
  • 164 Peters A, von Klot S, Heier M. et al. Exposure to traffic and the onset of myocardial infarction. N Engl J Med 2004; 351: 1721-1730
  • 165 Peters A, von Klot S, Heier M. et al. Particulate air pollution and nonfatal cardiac events. Part I. Air pollution, personal activities, and onset of myocardial infarction in a case-crossover study. Res Rep Health Eff Inst 2005; (124): 1-66 discussion 67 – 82, 141 – 148
  • 166 Forastiere F, Stafoggia M, Picciotto S. et al. A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am J Respir Crit Care Med 2005; 172: 1549-1555
  • 167 von Klot S, Peters A, Aalto P. et al. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 2005; 112: 3073-3079
  • 168 Lanki T, Pekkanen J, Aalto P. et al. Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. Occup Environ Med 2006; 63: 844-851
  • 169 Gardner B, Ling F, Hopke PK. et al. Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. Part Fibre Toxicol 2014; 11: 1
  • 170 Wolf K, Schneider A, Breitner S. et al. Associations between short-term exposure to particulate matter and ultrafine particles and myocardial infarction in Augsburg, Germany. Int J Hyg Environ Health 2015; 218: 535-542
  • 171 Wolf K, Stafoggia M, Cesaroni G. et al. Long-term Exposure to Particulate Matter Constituents and the Incidence of Coronary Events in 11 European Cohorts. Epidemiology (Cambridge, Mass) 2015; 26: 565-574
  • 172 Halonen JI, Lanki T, Yli-Tuomi T. et al. Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly. Epidemiology (Cambridge, Mass) 2009; 20: 143-153
  • 173 Belleudi V, Faustini A, Stafoggia M. et al. Impact of fine and ultrafine particles on emergency hospital admissions for cardiac and respiratory diseases. Epidemiology (Cambridge, Mass) 2010; 21: 414-423
  • 174 Andersen ZJ, Wahlin P, Raaschou-Nielsen O. et al. Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup Environ Med 2008; 65: 458-466
  • 175 Bhaskaran K, Hajat S, Armstrong B. et al. The effects of hourly differences in air pollution on the risk of myocardial infarction: case crossover analysis of the MINAP database. BMJ 2011; 343
  • 176 Pope III CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006; 56: 709-742
  • 177 Braga AL, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 2002; 110: 859-863
  • 178 Zanobetti A, Schwartz J. The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environ Health Perspect 2005; 113: 978-982
  • 179 Tonne C, Melly S, Mittleman M. et al. A case-control analysis of exposure to traffic and acute myocardial infarction. Environ Health Perspect 2007; 115: 53-57
  • 180 Berglind N, Ljungman P, Möller J. et al. Air Pollution Exposure – A Trigger for Myocardial Infarction?. Int J Environ Res Public Health 2010; 7: 1486
  • 181 Nawrot TS, Perez L, Kunzli N. et al. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet (London, England) 2011; 377: 732-740
  • 182 Benjamin EJ, Blaha MJ, Chiuve SE. et al. Heart Disease and Stroke Statistics – 2017 Update: A Report From the American Heart Association. Circulation 2017; 135: e146-e603
  • 183 Robert Koch-Institut. Gesundheit in Deutschland. 2015 https://www.rki.de/DE/Content/Gesundheitsmonitoring/Gesundheitsberichterstattung/GesInDtld/gesundheit_in_deutschland_2015.pdf?__blob=publicationFile DOI: http://dx.doi.org/10.25646/3173
  • 184 Ljungman PL, Mittleman MA. Ambient air pollution and stroke. Stroke 2014; 45: 3734-3741
  • 185 Wang Y, Eliot MN, Wellenius GA. Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis. J Am Heart Assoc 2014; 3
  • 186 Shah AS, Lee KK, McAllister DA. et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 2015; 350: h1295
  • 187 Wellenius GA, Schwartz J, Mittleman MA. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke 2005; 36: 2549-2553
  • 188 Wellenius GA, Burger MR, Coull BA. et al. Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med 2012; 172: 229-234
  • 189 O’Donnell MJ, Fang J, Mittleman MA. et al. Fine particulate air pollution (PM2.5) and the risk of acute ischemic stroke. Epidemiology (Cambridge, Mass) 2011; 22: 422-431
  • 190 Lee KK, Miller MR, Shah ASV. Air Pollution and Stroke. J Stroke 2018; 20: 2-11
  • 191 Mostofsky E, Wilker EH, Schwartz J. et al. Short-term changes in ambient temperature and risk of ischemic stroke. Cerebrovasc Dis Extra 2014; 4: 9-18